Programming a topologically constrained DNA nanostructure into a sensor
- PMID: 27337657
- PMCID: PMC4931013
- DOI: 10.1038/ncomms12074
Programming a topologically constrained DNA nanostructure into a sensor
Abstract
Many rationally engineered DNA nanostructures use mechanically interlocked topologies to connect individual DNA components, and their physical connectivity is achieved through the formation of a strong linking duplex. The existence of such a structural element also poses a significant topological constraint on functions of component rings. Herein, we hypothesize and confirm that DNA catenanes with a strong linking duplex prevent component rings from acting as the template for rolling circle amplification (RCA). However, by using an RNA-containing DNA [2] catenane with a strong linking duplex, we show that a stimuli-responsive RNA-cleaving DNAzyme can linearize one component ring, and thus enable RCA, producing an ultra-sensitive biosensing system. As an example, a DNA catenane biosensor is engineered to detect the model bacterial pathogen Escherichia coli through binding of a secreted protein, with a detection limit of 10 cells ml(-1), thus establishing a new platform for further applications of mechanically interlocked DNA nanostructures.
Figures





Similar articles
-
Triggered polycatenated DNA scaffolds for DNA sensors and aptasensors by a combination of rolling circle amplification and DNAzyme amplification.Anal Chem. 2010 Nov 15;82(22):9447-54. doi: 10.1021/ac1021198. Epub 2010 Oct 18. Anal Chem. 2010. PMID: 20954711
-
Topological DNA Assemblies Containing Identical or Fraternal Twins.Chembiochem. 2016 Jun 16;17(12):1142-5. doi: 10.1002/cbic.201600036. Epub 2016 Apr 23. Chembiochem. 2016. PMID: 26994736
-
Engineering interlocking DNA rings with weak physical interactions.Nat Commun. 2014 Jun 27;5:4279. doi: 10.1038/ncomms5279. Nat Commun. 2014. PMID: 24969435
-
Construction of rolling circle amplification products-based pure nucleic acid nanostructures for biomedical applications.Acta Biomater. 2023 Apr 1;160:1-13. doi: 10.1016/j.actbio.2023.02.005. Epub 2023 Feb 9. Acta Biomater. 2023. PMID: 36764595 Review.
-
Construction of rolling circle amplification-based DNA nanostructures for biomedical applications.Biomater Sci. 2022 Jun 14;10(12):3054-3061. doi: 10.1039/d2bm00445c. Biomater Sci. 2022. PMID: 35535967 Review.
Cited by
-
Cyclization of secondarily structured oligonucleotides to single-stranded rings by using Taq DNA ligase at high temperatures.RSC Adv. 2018 May 23;8(34):18972-18979. doi: 10.1039/c8ra02804d. eCollection 2018 May 22. RSC Adv. 2018. PMID: 35539641 Free PMC article.
-
Biosensing with DNAzymes.Chem Soc Rev. 2021 Aug 21;50(16):8954-8994. doi: 10.1039/d1cs00240f. Epub 2021 Jul 6. Chem Soc Rev. 2021. PMID: 34227631 Free PMC article. Review.
-
Rolling Circle Amplification as an Efficient Analytical Tool for Rapid Detection of Contaminants in Aqueous Environments.Biosensors (Basel). 2021 Sep 23;11(10):352. doi: 10.3390/bios11100352. Biosensors (Basel). 2021. PMID: 34677308 Free PMC article. Review.
-
Terminal hairpin in oligonucleotide dominantly prioritizes intramolecular cyclization by T4 ligase over intermolecular polymerization: an exclusive methodology for producing ssDNA rings.Nucleic Acids Res. 2018 Dec 14;46(22):e132. doi: 10.1093/nar/gky769. Nucleic Acids Res. 2018. PMID: 30169701 Free PMC article.
-
RNA-cleaving DNAzymes as a diagnostic and therapeutic agent against antimicrobial resistant bacteria.Curr Genet. 2022 Feb;68(1):27-38. doi: 10.1007/s00294-021-01212-0. Epub 2021 Sep 9. Curr Genet. 2022. PMID: 34505182 Review.
References
-
- Mao C., Sun W. & Seeman N. C. Assembly of Borromean rings from DNA. Nature 386, 137–138 (1997). - PubMed
-
- Wang H., Du S. M. & Seeman N. C. Tight single-stranded DNA knots. J. Biomol. Struct. Dyn. 10, 853–863 (1993). - PubMed
-
- Schmidt T. L. & Heckel A. Construction of a structurally defined double-stranded DNA catenane. Nano Lett. 11, 1739–1742 (2011). - PubMed
-
- Ackermann D. et al.. A double-stranded DNA rotaxane. Nat. Nanotechnol. 5, 436–442 (2010). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials