Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jun 24;11(6):e0158128.
doi: 10.1371/journal.pone.0158128. eCollection 2016.

Comparison of Thermal and Non-Thermal Processing of Swine Feed and the Use of Selected Feed Additives on Inactivation of Porcine Epidemic Diarrhea Virus (PEDV)

Affiliations

Comparison of Thermal and Non-Thermal Processing of Swine Feed and the Use of Selected Feed Additives on Inactivation of Porcine Epidemic Diarrhea Virus (PEDV)

Michaela P Trudeau et al. PLoS One. .

Abstract

Infection with porcine epidemic diarrhea virus (PEDV) causes diarrhea, vomiting, and high mortality in suckling pigs. Contaminated feed has been suggested as a vehicle of transmission for PEDV. The objective of this study was to compare thermal and electron beam processing, and the inclusion of feed additives on the inactivation of PEDV in feed. Feed samples were spiked with PEDV and then heated to 120-145°C for up to 30 min or irradiated at 0-50 kGy. Another set of feed samples spiked with PEDV and mixed with Ultracid P (Nutriad), Activate DA (Novus International), KEM-GEST (Kemin Agrifood), Acid Booster (Agri-Nutrition), sugar or salt was incubated at room temperature (~25°C) for up to 21 days. At the end of incubation, the virus titers were determined by inoculation of Vero-81 cells and the virus inactivation kinetics were modeled using the Weibull distribution model. The Weibull kinetic parameter delta represented the time or eBeam dose required to reduce virus concentration by 1 log. For thermal processing, delta values ranged from 16.52 min at 120°C to 1.30 min at 145°C. For eBeam processing, a target dose of 50 kGy reduced PEDV concentration by 3 log. All additives tested were effective in reducing the survival of PEDV when compared with the control sample (delta = 17.23 days). Activate DA (0.81) and KEM-GEST (3.28) produced the fastest inactivation. In conclusion, heating swine feed at temperatures over 130°C or eBeam processing of feed with a dose over 50 kGy are effective processing steps to reduce PEDV survival. Additionally, the inclusion of selected additives can decrease PEDV survivability.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared no competing interests exist.

Figures

Fig 1
Fig 1. Inactivation of PEDV in complete feed when exposed to thermal processing.
The inactivation curves determined by the Weibull model for the survival of PEDV in complete feed at 120°C, 130°C, 140°C, and 145°C.
Fig 2
Fig 2. Inactivation of PEDV by eBeam irradiation processing.
Inactivation curve modeled by the Weibull model for the survival of PEDV in complete feed when exposed to eBeam irradiation.

References

    1. Hofmann M, Wyler R. Quantitation, biological and physicochemical properties of cell culture-adapted porcine epidemic diarrhea coronavirus (PEDV). Vet Microbiol. 1989;20:131–42. - PMC - PubMed
    1. Pensaert MB, de Bouck P. A new coronavirus-like particle associated with diarrhea in swine. Arch Virol. 1978;58(3):243–7. - PMC - PubMed
    1. Stevenson GW, Hoang H, Schwartz KJ, Burrough EB, Sun D, Madson D, et al. Emergence of Porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences. J Vet Diagn Invest. 2013;25:649–54. 10.1177/1040638713501675 - DOI - PubMed
    1. Song D, Park B. Porcine epidemic diarrhea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes. 2012;44(2):167–75. 10.1007/s11262-012-0713-1 - DOI - PMC - PubMed
    1. Zhang Y, Yin Y, Fang J, Wang Q. Pig production in subtropical agriculture. 2012;9:1016–24. - PubMed