Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct;64(7):1172-8.
doi: 10.1136/jim-2016-000118. Epub 2016 Jun 24.

Identification of high resource utilizing patients on internal medicine hospital services

Affiliations

Identification of high resource utilizing patients on internal medicine hospital services

David W Walsh et al. J Investig Med. 2016 Oct.

Abstract

In order to provide high quality, cost-efficient care, it is critical to understand drivers of the cost of care. Therefore, we sought to identify clinical variables associated with high utilization (cost) in patients admitted to medical services and to develop a robust model to identify high utilization patients. In this case-control analysis, cases were identified as the 200 most costly patients admitted to internal medicine/internal medicine subspecialty services using our institution's computerized clinical data warehouse over a 7-month time period (November 1, 2012-May 31, 2013). 400 patients admitted in the same time period were randomly selected to serve as controls. The mean cost for the highest utilization patients was $126,343, while that for randomly matched patients was $15,575. In a multivariable regression model, the following variables were associated with high utilization of resources: African American race, age 35-44, admission through the emergency department, primary service of hematology-oncology, a history of heart failure or paralysis, a diagnosis of HIV, cancer, collagen vascular diseases and/or coagulopathy, a reduced albumin, and/or an elevated creatinine. The in hospital mortality rate for high utilization patients was 19%, compared to 8% for controls (p=0.0002). A predictive model using 14 different readily available clinical variables predicted high utilization with an area under the curve of 0.85. The data suggest that high utilization patients share similar demographic and clinical features. We speculate that a predictive model using commonly known patient characteristics should be able to predict high utilization patients.

Keywords: Academic Medical Centers; Inpatients; Intensive Care.

PubMed Disclaimer

LinkOut - more resources