Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Editorial
. 2016 Oct:33:127-133.
doi: 10.1016/j.media.2016.06.008. Epub 2016 Jun 15.

Spatial normalization of brain images and beyond

Affiliations
Editorial

Spatial normalization of brain images and beyond

J-F Mangin et al. Med Image Anal. 2016 Oct.

Abstract

The deformable atlas paradigm has been at the core of computational anatomy during the last two decades. Spatial normalization is the variant endowing the atlas with a coordinate system used for voxel-based aggregation of images across subjects and studies. This framework has largely contributed to the success of brain mapping. Brain spatial normalization, however, is still ill-posed because of the complexity of the human brain architecture and the lack of architectural landmarks in standard morphological MRI. Multi-atlas strategies have been developed during the last decade to overcome some difficulties in the context of segmentation. A new generation of registration algorithms embedding architectural features inferred for instance from diffusion or functional MRI is on the verge to improve the architectural value of spatial normalization. A better understanding of the architectural meaning of the cortical folding pattern will lead to use some sulci as complementary constraints. Improving the architectural compliance of spatial normalization may impose to relax the diffeomorphic constraint usually underlying atlas warping. A two-level strategy could be designed: in each region, a dictionary of templates of incompatible folding patterns would be collected and matched in a way or another using rare architectural information, while individual subjects would be aligned using diffeomorphisms to the closest template. Manifold learning could help to aggregate subjects according to their morphology. Connectivity-based strategies could emerge as an alternative to deformation-based alignment leading to match the connectomes of the subjects rather than images.

Keywords: Connectome; Cortical folding pattern; Diffeomorphism; Spatial normalization.

PubMed Disclaimer

Publication types

LinkOut - more resources