Evolving specificity of tRNA 3-methyl-cytidine-32 (m3C32) modification: a subset of tRNAsSer requires N6-isopentenylation of A37
- PMID: 27354703
- PMCID: PMC4986895
- DOI: 10.1261/rna.056259.116
Evolving specificity of tRNA 3-methyl-cytidine-32 (m3C32) modification: a subset of tRNAsSer requires N6-isopentenylation of A37
Abstract
Post-transcriptional modifications of anticodon loop (ACL) nucleotides impact tRNA structure, affinity for the ribosome, and decoding activity, and these activities can be fine-tuned by interactions between nucleobases on either side of the anticodon. A recently discovered ACL modification circuit involving positions 32, 34, and 37 is disrupted by a human disease-associated mutation to the gene encoding a tRNA modification enzyme. We used tRNA-HydroSeq (-HySeq) to examine (3)methyl-cytidine-32 (m(3)C32), which is found in yeast only in the ACLs of tRNAs(Ser) and tRNAs(Thr) In contrast to that reported for Saccharomyces cerevisiae in which all m(3)C32 depends on a single gene, TRM140, the m(3)C32 of tRNAs(Ser) and tRNAs(Thr) of the fission yeast S. pombe, are each dependent on one of two related genes, trm140(+) and trm141(+), homologs of which are found in higher eukaryotes. Interestingly, mammals and other vertebrates contain a third homolog and also contain m(3)C at new sites, positions 32 on tRNAs(Arg) and C47:3 in the variable arm of tRNAs(Ser) More significantly, by examining S. pombe mutants deficient for other modifications, we found that m(3)C32 on the three tRNAs(Ser) that contain anticodon base A36, requires N(6)-isopentenyl modification of A37 (i(6)A37). This new C32-A37 ACL circuitry indicates that i(6)A37 is a pre- or corequisite for m(3)C32 on these tRNAs. Examination of the tRNA database suggests that such circuitry may be more expansive than observed here. The results emphasize two contemporary themes, that tRNA modifications are interconnected, and that some specific modifications on tRNAs of the same anticodon identity are species-specific.
Keywords: anticodon loop; isopentenylation; tRNA-HySeq.
© 2016 Arimbasseri et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Figures





Similar articles
-
S. cerevisiae Trm140 has two recognition modes for 3-methylcytidine modification of the anticodon loop of tRNA substrates.RNA. 2017 Mar;23(3):406-419. doi: 10.1261/rna.059667.116. Epub 2016 Dec 21. RNA. 2017. PMID: 28003514 Free PMC article.
-
The RNA methyltransferase METTL8 installs m3C32 in mitochondrial tRNAsThr/Ser(UCN) to optimise tRNA structure and mitochondrial translation.Nat Commun. 2022 Jan 11;13(1):209. doi: 10.1038/s41467-021-27905-1. Nat Commun. 2022. PMID: 35017528 Free PMC article.
-
Transfer RNA recognition by the Escherichia coli delta2-isopentenyl-pyrophosphate:tRNA delta2-isopentenyl transferase: dependence on the anticodon arm structure.RNA. 1997 Jul;3(7):721-33. RNA. 1997. PMID: 9214656 Free PMC article.
-
Factors That Shape Eukaryotic tRNAomes: Processing, Modification and Anticodon-Codon Use.Biomolecules. 2017 Mar 8;7(1):26. doi: 10.3390/biom7010026. Biomolecules. 2017. PMID: 28282871 Free PMC article. Review.
-
A rationale for tRNA modification circuits in the anticodon loop.RNA. 2018 Oct;24(10):1277-1284. doi: 10.1261/rna.067736.118. Epub 2018 Jul 19. RNA. 2018. PMID: 30026310 Free PMC article. Review.
Cited by
-
Different modification pathways for m1A58 incorporation in yeast elongator and initiator tRNAs.Nucleic Acids Res. 2023 Oct 27;51(19):10653-10667. doi: 10.1093/nar/gkad722. Nucleic Acids Res. 2023. PMID: 37650648 Free PMC article.
-
Modifications of the human tRNA anticodon loop and their associations with genetic diseases.Cell Mol Life Sci. 2021 Dec;78(23):7087-7105. doi: 10.1007/s00018-021-03948-x. Epub 2021 Oct 4. Cell Mol Life Sci. 2021. PMID: 34605973 Free PMC article. Review.
-
Deciphering Epitranscriptome: Modification of mRNA Bases Provides a New Perspective for Post-transcriptional Regulation of Gene Expression.Front Cell Dev Biol. 2021 Mar 16;9:628415. doi: 10.3389/fcell.2021.628415. eCollection 2021. Front Cell Dev Biol. 2021. PMID: 33816473 Free PMC article. Review.
-
Crystal structure of human METTL6, the m3C methyltransferase.Commun Biol. 2021 Dec 3;4(1):1361. doi: 10.1038/s42003-021-02890-9. Commun Biol. 2021. PMID: 34862464 Free PMC article.
-
The life and times of a tRNA.RNA. 2023 Jul;29(7):898-957. doi: 10.1261/rna.079620.123. Epub 2023 Apr 13. RNA. 2023. PMID: 37055150 Free PMC article. Review.
References
-
- Asakura T, Sasaki T, Nagano F, Satoh A, Obaishi H, Nishioka H, Imamura H, Hotta K, Tanaka K, Nakanishi H, et al. 1998. Isolation and characterization of a novel actin filament-binding protein from Saccharomyces cerevisiae. Oncogene 16: 121–130. - PubMed
-
- Auffinger P, Westhof E. 1999. Singly and bifurcated hydrogen-bonded base-pairs in tRNA anticodon hairpins and ribozymes. J Mol Biol 292: 467–483. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases