Mechanics of a thin walled collapsible microtube
- PMID: 2735580
- DOI: 10.1007/BF02368042
Mechanics of a thin walled collapsible microtube
Abstract
The purpose of this study is to measure the transmural pressure-cross sectional area relation of micro tubes (240 microns diameter) and to compare the measured perfusion pressure-flow relation with the pressure-flow relation calculated from the experimental pressure-cross sectional area relation. The microtubes are made by dipping a glass mould in a latex solution and glueing their outside ends to the inside of glass pipettes. The pressure-cross sectional area relation is determined both with a microplethysmograph (pressure-volume relation) and the microscope (pressure-diameter relations). Heparinized blood is used to include the rheological properties of blood as a perfusion medium. Static pressure-flow relations are obtained with a constant velocity piston pump for two values of external pressure (0 and 10 kPa) and with two downstream resistor settings (0 and 380 kPa cm-3 sec). The calculated pressure-flow relations using length and the experimental pressure-cross sectional area relation, Poiseuille's law, and accounting for the diameter- and shear-dependent viscosity compared well with the relations obtained from the experiments. It is also found that the pressure-flow relation shows an apparent zero flow pressure axis intercept (the extrapolation of the pressure-flow relation to the pressure axis), which can therefore be explained on the basis of the shape of the pressure-area relations.