Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct;18(10):1013-24.
doi: 10.1111/dom.12713. Epub 2016 Aug 15.

Dogfish glucagon analogues counter hyperglycaemia and enhance both insulin secretion and action in diet-induced obese diabetic mice

Affiliations

Dogfish glucagon analogues counter hyperglycaemia and enhance both insulin secretion and action in diet-induced obese diabetic mice

F P M O'Harte et al. Diabetes Obes Metab. 2016 Oct.

Abstract

Aims: To investigate the antidiabetic actions of three dogfish glucagon peptide analogues [known glucagon-like peptide-1 and glucagon receptor co-agonists] after chronic administration in diet-induced high-fat-diet-fed diabetic mice.

Materials and methods: National Institutes of Health Swiss mice were pre-conditioned to a high-fat diet (45% fat) for 100 days, and control mice were fed a normal diet (10% fat). Normal diet control and high-fat-fed control mice received twice-daily intraperitoneal (i.p.) saline injections, while the high-fat-fed treatment groups (n = 8) received twice-daily injections of exendin-4(1-39), [S2a]dogfish glucagon, [S2a]dogfish glucagon exendin-4(31-39) or [S2a]dogfish glucagon-Lys(30) -γ-glutamyl-PAL (25 nmol/kg body weight) for 51 days.

Results: After dogfish glucagon analogue treatment, there was a rapid and sustained decrease in non-fasting blood glucose and an associated insulinotropic effect (analysis of variance, p < .05 to <.001) compared with saline-treated high-fat-fed controls. All peptide treatments significantly improved i.p. and oral glucose tolerance with concomitant increased insulin secretion compared with saline-treated high-fat-fed controls (p <.05 to <.001). After chronic treatment, no receptor desensitization was observed but insulin sensitivity was enhanced for all peptide-treated groups (p < .01 to <.001) except [S2a]dogfish glucagon. Both exendin-4 and [S2a]dogfish glucagon exendin-4(31-39) significantly reduced plasma triglyceride concentrations compared with those found in lean controls (p = .0105 and p = .0048, respectively). Pancreatic insulin content was not affected by peptide treatments but [S2a]dogfish glucagon and [S2a]dogfish glucagon exendin-4(31-39) decreased pancreatic glucagon by 28%-34% (p = .0221 and p = .0075, respectively). The percentage of β-cell area within islets was increased by exendin-4 and peptide analogue treatment groups compared with high-fat-fed controls and the β-cell area decreased (p < .05 to <.01).

Conclusions: Overall, dogfish glucagon co-agonist analogues had several beneficial metabolic effects, showing therapeutic potential for type 2 diabetes.

Keywords: chronic study; co-agonist; diabetic mice; dogfish glucagon; glucagon-like peptide-1; peptide analogues; therapy.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms