Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jun 29:9:134.
doi: 10.1186/s13068-016-0537-7. eCollection 2016.

Microbial synthesis of poly-γ-glutamic acid: current progress, challenges, and future perspectives

Affiliations
Review

Microbial synthesis of poly-γ-glutamic acid: current progress, challenges, and future perspectives

Zhiting Luo et al. Biotechnol Biofuels. .

Abstract

Poly-γ-glutamic acid (γ-PGA) is a naturally occurring biopolymer made from repeating units of l-glutamic acid, d-glutamic acid, or both. Since some bacteria are capable of vigorous γ-PGA biosynthesis from renewable biomass, γ-PGA is considered a promising bio-based chemical and is already widely used in the food, medical, and wastewater industries due to its biodegradable, non-toxic, and non-immunogenic properties. In this review, we consider the properties, biosynthetic pathway, production strategies, and applications of γ-PGA. Microbial biosynthesis of γ-PGA and the molecular mechanisms regulating production are covered in particular detail. Genetic engineering and optimization of the growth medium, process control, and downstream processing have proved to be effective strategies for lowering the cost of production, as well as manipulating the molecular mass and conformational/enantiomeric properties that facilitate screening of competitive γ-PGA producers. Finally, future prospects of microbial γ-PGA production are discussed in light of recent progress, challenges, and trends in this field.

Keywords: Industrial applications; Metabolic regulation; Microbial fermentation; Poly-γ-glutamic acid; Process optimization; Strain development.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Microbial biosynthesis of γ-PGA [8, 10]. Types of substrates in the culture medium were mostly a variety of biomass materials, cane molasses, agro-industrial wastes, which could be degraded into C6 and C5 compound, entering into the main carbon metabolism via glycolysis and pentose phosphate pathway. In addition, glycerol as well as metabolic intermediates of citrate cycle was also used as candidate substrate [79]. The main byproducts were acetoin and 2,3-butanediol; other byproducts with little production were lactate, ethanol, and acetate [80]. PPP pentose phosphate pathway, G3P glyceraldehyde 3-phosphate, E1 glutamate dehydrogenase (GD), E2 glutamate 2-oxoglutarate aminotransferase, E3 glutamine synthetase (GS), E4 l-glutamic acid: pyruvate aminotransferase, E5 alanine racemase, E6 d-glutamic acid: pyruvate aminotransferase, E7 direction conversion, E8 PGA synthetase
Fig. 2
Fig. 2
Arrangement of genes encoding γ-PGA synthetase and γ-PGA peptidase complexes in various species. All components of γ-PGA synthetase are essentially membrane associated) [8]

Similar articles

Cited by

References

    1. Shih IL, Van YT. The production of poly-(gamma-glutamic acid) from microorganisms and its various applications. Bioresour Technol. 2001;79:207–225. doi: 10.1016/S0960-8524(01)00074-8. - DOI - PubMed
    1. Sanda F, Fujiyama T, Endo T. Chemical synthesis of poly-gamma-glutamic acid by polycondensation of gamma-glutamic acid dimer: synthesis and reaction of poly-gamma-glutamic acid methyl ester. J Polym Sci Polym Chem. 2001;39:732–741. doi: 10.1002/1099-0518(20010301)39:5<732::AID-POLA1045>3.0.CO;2-P. - DOI
    1. Candela T, Moya M, Haustant M, Fouet A. Fusobacterium nucleatum, the first gram-negative bacterium demonstrated to produce polyglutamate. Can J Microbiol. 2009;55:627–632. doi: 10.1139/W09-003. - DOI - PubMed
    1. Hezayen FF, Rehm BH, Tindall BJ, Steinbuchel A. Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid) Int J Syst Evol Microbiol. 2001;51:1133–1142. doi: 10.1099/00207713-51-3-1133. - DOI - PubMed
    1. Akagi T, Baba M, Akashi M. Preparation of nanoparticles by the self-organization of polymers consisting of hydrophobic and hydrophilic segments: potential applications. Polymer. 2007;48:6729–6747. doi: 10.1016/j.polymer.2007.08.038. - DOI