Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Jul;10(7):1329-32.
doi: 10.1093/carcin/10.7.1329.

O6-methyltransferase-deficient and -proficient CHO cells differ in their responses to ethyl- and methyl-nitrosourea-induced DNA alkylation

Affiliations

O6-methyltransferase-deficient and -proficient CHO cells differ in their responses to ethyl- and methyl-nitrosourea-induced DNA alkylation

M Bignami et al. Carcinogenesis. 1989 Jul.

Abstract

The mutagenic and cytotoxic effects of N-ethyl-N-nitrosourea (ENU) and N-methyl-N-nitrosourea (MNU) were compared in two isogenic Chinese hamster ovary (CHO) cell lines differing for the expression of the repair function for O6-methylguanine (O6-meGua), the O6-methyl-DNA-methyltransferase (MT). Survival and ouabain resistance (ouar) mutation frequency were similar in the two cell lines after treatment with ENU while both effects were strongly reduced in the MT-proficient (MT+) CHO cells after exposure to MNU. The slow repair kinetics of O6-ethylguanine (O6-etGua) when compared to O6-meGua, i.e. 25% versus 88% removal at 20 h after treatment, could still account for the similar mutational curves reported in the two cell lines after ENU treatment. The number of ENU-induced sister chromatid exchanges (SCE) was slightly reduced in the MT+ as compared to MT-deficient CHO cells suggesting a role for O6-etGua in SCE formation. Comparison of survival after exposure to ENU and MNU showed that, at similar levels of O6-alkylguanine on DNA, the ethyl- is more tolerated than the methyl-adduct. These data focus the attention on the importance of DNA damage processing in the cytotoxic response to alkylating agents.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources