Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2016 Jun 28;8(7):400.
doi: 10.3390/nu8070400.

An Intervention with Mineral Water Decreases Cardiometabolic Risk Biomarkers. A Crossover, Randomised, Controlled Trial with Two Mineral Waters in Moderately Hypercholesterolaemic Adults

Affiliations
Randomized Controlled Trial

An Intervention with Mineral Water Decreases Cardiometabolic Risk Biomarkers. A Crossover, Randomised, Controlled Trial with Two Mineral Waters in Moderately Hypercholesterolaemic Adults

Laura Toxqui et al. Nutrients. .

Abstract

Water intake is essential for health maintenance and disease prevention. The effects of an intervention with two mineral waters, sodium-bicarbonated mineral water (BW) or control mineral water low in mineral content (CW), on cardiometabolic risk biomarkers were studied. In a randomised-controlled crossover-trial, sixty-four moderately hypercholesterolaemic adults were randomly assigned to consume 1 L/day of either BW (sodium, 1 g/L; bicarbonate, 2 g/L) or CW with the main meals for eight weeks, separated by an eight-week washout period. Blood lipids, lipid oxidation, glucose, insulin, aldosterone, urine pH, urinary electrolytes, blood pressure, body weight, fluid intake, energy, and nutrients from total diet and beverages were determined. Total cholesterol, LDL cholesterol, and glucose decreased (p < 0.01), oxidised LDL tended to decrease (p = 0.073), and apolipoprotein B increased during the intervention, without water type effect. Energy and carbohydrates from beverages decreased since soft drinks and fruit juice consumptions decreased throughout the trial. BW increased urinary pH (p = 0.006) and reduced calcium/creatinine excretion (p = 0.011). Urinary potassium/creatinine decreased with both waters. Consumption of 1 L/day of mineral water with the main meals reduces cardiometabolic risk biomarkers, likely to be attributed to a replacement of soft drinks by water. In addition, BW does not affect blood pressure and exerts a moderate alkalizing effect in the body.

Keywords: cardiometabolic risk; cholesterol; fluid intake; human; randomised controlled trial; sodium-bicarbonated mineral water.

PubMed Disclaimer

Figures

Figure 1
Figure 1
CONSORT flow diagram showing number of participants through each stage of the randomised crossover trial.

References

    1. Gandy J. Water intake: Validity of population assessment and recommendations. Eur. J. Nutr. 2015;54:11–16. doi: 10.1007/s00394-015-0944-8. - DOI - PMC - PubMed
    1. Gandy J. Erratum to: Water intake: Validity of population assessment and recommendations. Eur. J. Nutr. 2015;54:1031. doi: 10.1007/s00394-015-0965-3. - DOI - PMC - PubMed
    1. Siener R., Jahnen A., Hesse A. Influence of a mineral water rich in calcium, magnesium and bicarbonate on urine composition and the risk of calcium oxalate crystallization. Eur. J. Clin. Nutr. 2004;58:270–276. doi: 10.1038/sj.ejcn.1601778. - DOI - PubMed
    1. Bohmer H., Muller H., Resch K.L. Calcium supplementation with calcium-rich mineral waters: A systematic review and meta-analysis of its bioavailability. Osteoporos. Int. 2000;11:938–943. doi: 10.1007/s001980070032. - DOI - PubMed
    1. Schoppen S., Perez-Granados A.M., Carbajal A., Oubina P., Sanchez-Muniz F.J., Gomez-Gerique J.A., Vaquero M.P. A sodium-rich carbonated mineral water reduces cardiovascular risk in postmenopausal women. J. Nutr. 2004;134:1058–1063. - PubMed

Publication types

MeSH terms