Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016:2016:4065382.
doi: 10.1155/2016/4065382. Epub 2016 Jun 9.

Histone Acetylation and Its Modifiers in the Pathogenesis of Diabetic Nephropathy

Affiliations
Review

Histone Acetylation and Its Modifiers in the Pathogenesis of Diabetic Nephropathy

Xiaoxia Li et al. J Diabetes Res. 2016.

Abstract

Diabetic nephropathy (DN) remains a leading cause of mortality worldwide despite advances in its prevention and management. A comprehensive understanding of factors contributing to DN is required to develop more effective therapeutic options. It is becoming more evident that histone acetylation (HAc), as one of the epigenetic mechanisms, is thought to be associated with the etiology of diabetic vascular complications such as diabetic retinopathy (DR), diabetic cardiomyopathy (DCM), and DN. Histone acetylases (HATs) and histone deacetylases (HDACs) are the well-known regulators of reversible acetylation in the amino-terminal domains of histone and nonhistone proteins. In DN, however, the roles of histone acetylation (HAc) and these enzymes are still controversial. Some new evidence has revealed that HATs and HDACs inhibitors are renoprotective in cellular and animal models of DN, while, on the other hand, upregulation of HAc has been implicated in the pathogenesis of DN. In this review, we focus on the recent advances on the roles of HAc and their covalent enzymes in the development and progression of DN in certain cellular processes including fibrosis, inflammation, hypertrophy, and oxidative stress and discuss how targeting these enzymes and their inhibitors can ultimately lead to the therapeutic approaches for treating DN.

PubMed Disclaimer

References

    1. Tervaert T. W. C., Mooyaart A. L., Amann K., et al. Pathologic classification of diabetic nephropathy. Journal of the American Society of Nephrology. 2010;21(4):556–563. doi: 10.1681/ASN.2010010010. - DOI - PubMed
    1. Reddy M. A., Tak Park J., Natarajan R. Epigenetic modifications in the pathogenesis of diabetic nephropathy. Seminars in Nephrology. 2013;33(4):341–353. doi: 10.1016/j.semnephrol.2013.05.006. - DOI - PMC - PubMed
    1. Matsushita K., van der Velde M., Astor B. C., et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. The Lancet. 2010;375(9731):2073–2081. doi: 10.1016/S0140-6736(10)60674-5. - DOI - PMC - PubMed
    1. Forbes J. M., Cooper M. E. Mechanisms of diabetic complications. Physiological Reviews. 2013;93(1):137–188. doi: 10.1152/physrev.00045.2011. - DOI - PubMed
    1. Yacoub R., Campbell K. N. Inhibition of RAS in diabetic nephropathy. International Journal of Nephrology and Renovascular Disease. 2015;8:29–40. doi: 10.2147/IJNRD.S37893. - DOI - PMC - PubMed

Substances

LinkOut - more resources