Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016:891:21-9.
doi: 10.1007/978-3-319-27592-5_3.

Enteric Inhibitory Neurotransmission, Starting Down Under

Affiliations
Review

Enteric Inhibitory Neurotransmission, Starting Down Under

Kenton M Sanders. Adv Exp Med Biol. 2016.

Abstract

The idea of an inhibitory innervation in the gut came from Geoff Burnstock's group at the University of Melbourne in the 1960s. Being resistant to antagonists of norepinephrine and acetylcholine, enteric inhibitory neurotransmission became known as non-cholinergic, non-adrenergic (NANC) neurotransmission. ATP (or a closely related nucleotide) was proposed as the inhibitory neurotransmitter based on release of purines during nerve stimulation and similarities between responses to ATP and transmural nerve stimulation in several gut preparations. Apamin was found to block purinergic responses, providing evidence that small-conductance Ca(2+)-activated K(+) (SK) channels were responsible for inhibitory junction potentials (IJPs). Actually the IJPs in GI muscles are composed of multiple components, and later studies discovered nitric oxide (NO) to be the other major mediator of NANC inhibitory neurotransmission. The purinergic component of enteric inhibitory neurotransmission is mediated by P2Y1 receptors, and this component is absent in P2Y1(-/-) mice. The criteria for a neurotransmitter are better met by β-nicotinamide adenine dinucleotide (β-NAD) or its immediate metabolite ADP-ribose (ADPR) than by ATP. The cells mediating post-junctional responses have been identified. In addition to smooth muscle cells, two classes of interstitial cells express receptors and effectors for NANC neurotransmitters and are electrically coupled to smooth muscle cells. This integrated structure has been named the SIP syncytium. Interstitial cells of Cajal are involved in transduction of cholinergic and nitrergic inputs to GI muscles, and PDGFRα(+) cells mediate purinergic effects. This short symposium report summarizes major historical points of interest and some of the more recent findings related to enteric inhibitory neurotransmission.

Keywords: Gastrointestinal motility; Nitric oxide; Purines; SIP syncytium; VIP.

PubMed Disclaimer

References

    1. Baker SA, Hennig GW, Salter AK, Kurahashi M, Ward SM, Sanders KM (2013) Distribution and Ca(2+) signalling of fibroblast-like (PDGFR(+)) cells in the murine gastric fundus. J Physiol 591:6193–6208 - PMC - PubMed
    1. Banks BE, Brown C, Burgess GM, Burnstock G, Claret M, Cocks TM, Jenkinson DH (1979) Apamin blocks certain neurotransmitter-induced increases in potassium permeability. Nature 282:415–417 - PubMed
    1. Bennett MR, Burnstock G, Holman M (1966) Transmission from intramural inhibitory nerves to the smooth muscle of the guinea-pig taenia coli. J Physiol 182:541–558 - PMC - PubMed
    1. Bhetwal BP, Sanders KM, An C, Trappanese DM, Moreland RS, Perrino BA (2013) Ca2+ sensitization pathways accessed by cholinergic neurotransmission in the murine gastric fundus. J Physiol 591:2971–2986 - PMC - PubMed
    1. Bult H, Boeckxstaens GE, Pelckmans PA, Jordaens FH, Van Maercke YM, Herman AG (1990) Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature 345:346–347 - PubMed

Publication types

MeSH terms

LinkOut - more resources