Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2016 Jun 23;83(1):a1057.
doi: 10.4102/ojvr.v83i1.1057.

Comparative performance of traps in catching tsetse flies (Diptera: Glossinidae) in Tanzania

Affiliations
Comparative Study

Comparative performance of traps in catching tsetse flies (Diptera: Glossinidae) in Tanzania

Imna I Malele et al. Onderstepoort J Vet Res. .

Abstract

This study was conducted to determine the efficiency of different tsetse traps in 28 sites across Tanzania. The traps used were biconical, H, NGU, NZI, pyramidal, S3, mobile, and sticky panels. Stationary traps were deployed at a distance of 200 m apart and examined 72 h after deployment. The results showed that 117 (52.2%) out of the 224 traps deployed captured at least one Glossina species. A total of five Glossina species were captured, namely Glossina brevipalpis, Glossina pallidipes, Glossina swynnertoni, Glossina morsitans, and Glossina fuscipes martinii. Biconical traps caught tsetse flies in 27 sites, pyramidal in 26, sticky panel in 20, mobile in 19, S3 in 15, NGU in 7, H in 2 and NZI in 1. A total of 21 107 tsetse flies were trapped, with the most abundant species being G. swynnertoni (55.9%), followed by G. pallidipes (31.1%), G. fuscipes martinii (6.9%) and G. morsitans (6.0%). The least caught was G. brevipalpis (0.2%). The highest number of flies were caught by NGU traps (32.5%), followed by sticky panel (16%), mobile (15.4%), pyramidal (13.0%), biconical (11.3%) and S3 (10.2%). NZI traps managed to catch 0.9% of the total flies and H traps 0.7%. From this study, it can be concluded that the most efficient trap was NGU, followed by sticky panel and mobile, in that order. Therefore, for tsetse fly control programmes, NGU traps could be the better choice. Conversely, of the stationary traps, pyramidal and biconical traps captured tsetse flies in the majority of sites, covering all three ecosystems better than any other traps; therefore, they would be suitable for scouting for tsetse infestation in any given area, thus sparing the costs of making traps for each specific Glossina species.

Keywords: tseste; traps; densties; Glossina; mobile; stationary; Tanzania..

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no financial or personal relationships that may have inappropriately influenced them in writing this article.

Figures

FIGURE 1
FIGURE 1
Trapping performance of different traps for different species of tsetse flies.
FIGURE 2
FIGURE 2
Overall tsetse fly species mean number per trap.

References

    1. Auty H.K., Picozzi K., Malele I., Torr S.J., Cleaveland S. & Welburn S, 2012, ‘Using molecular data for epidemiological inference: Assessing the prevalence of Trypanosoma brucei rhodesiense in tsetse in Serengeti, Tanzania’, PLoS Neglected Tropical Diseases 6(1), e1501 http://dx.doi.org/10.1371/journal.pntd.0001501 - DOI - PMC - PubMed
    1. Centers for Disease Control and Prevention (CDC) , 2014, Epi Info 7 User Guide, viewed 20 July 2015, from https://wwwn.cdc.gov/epiinfo/user-guide
    1. Challier A., Eyraud M., Lafaye A. & Laveissiere C, 1977, ‘Amelioration du rendement du piege biconique pour glossines (Diptera, Glossinidae) par l’emploi d’un cone inferieur bleu’ [Improving the performance of the biconical trap for flies (Diptera, Glossinidae) by using a lower blue cone], Cahiers. ORSTOM, Serie Entomologie Medicale et Parasitologie 15, 283–286.
    1. Challier A. & Laveissiere C, 1973, ‘Un nouveau piege pour la capture des glossines (Glossina: Diptera, Muscidae): Description et essais sur le terrain’, Cahiers ORSTOM, Series Entomologie Medical Parasitologie 11, 251–262.
    1. Dransfield R.D., Brightwell R., Chaudhury M.F., Golder T.K. & Tarimo S.A.R, 1986, ‘The use of odour attractants for sampling Glossina pallidipes Austen (Diptera: Glossinidae) at Nguruman, Kenya’, Bulletin of Entomological Research 76, 607–619.

Publication types

LinkOut - more resources