Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2016 Jul 8;17(1):70.
doi: 10.1186/s12882-016-0288-5.

Effect of glycemic index and carbohydrate intake on kidney function in healthy adults

Affiliations
Randomized Controlled Trial

Effect of glycemic index and carbohydrate intake on kidney function in healthy adults

Stephen P Juraschek et al. BMC Nephrol. .

Abstract

Background: Replacing carbohydrate with protein acutely increases glomerular filtration rate (GFR) but is associated with faster, long-term kidney disease progression. The effects of carbohydrate type (i.e. glycemic index, GI) on kidney function are unknown.

Methods: We conducted an ancillary study of a randomized, crossover feeding trial in overweight/obese adults without diabetes or kidney disease (N = 163). Participants were fed each of four healthy, DASH-like diets for 5 weeks, separated by 2-week washout periods. Weight was kept constant. The four diets were: high GI (GI ≥65) with high %carb (58 % kcal) (reference diet), low GI (≤45) with low %carb (40 % kcal), low GI with high %carb; and high GI with low %carb. Plasma was collected at baseline and after each feeding period. Study outcomes were cystatin C, β2-microglobulin (β2M), and estimated GFR based on cystatin C (eGFRcys).

Results: Mean (SD) age was 52 (11) years; 52 % were women; 50 % were black. At baseline, mean (SD) cystatin C, β2M, and eGFRcys were 0.8 (0.1) mg/L, 1.9 (0.4) mg/L, and 104 (16) mL/min/1.73 m(2). Compared to the high GI/high %carb diet, reducing GI, %carb, or both increased eGFRcys by 1.9 mL/min/1.73 m(2) (95 % CI: 1.1, 2.7; P < 0.001), 3.0 mL/min/1.73 m(2) (1.9, 4.0; P < 0.001), and 4.5 mL/min/1.73 m(2) (3.5, 5.4; P < 0.001), respectively. Increases in eGFRcys from reducing GI were significantly associated with increases in eGFRcys from reducing %carb (P < 0.001). Results for cystatin C and β2M reflected eGFRcys.

Conclusions: Reducing GI increased GFR. Reducing %carb by increasing calories from protein and fat, also increased GFR. Future studies on GI should examine the long-term effects of this increase in GFR on kidney injury markers and clinical outcomes.

Trial registration: Clinical Trials.gov, number: NCT00608049 (first registered January 23, 2008).

Keywords: Carbohydrate; Clinical trial; Creatinine; Cystatin C; Diet; Estimated glomerular filtration rate; Glycemic index; β2-microglobulin.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
The effects (95 % confidence intervals) of reducing glycemic index (GI), reducing the proportion of carbohydrates (%carb), or reducing both GI and %carb on: a cystatin C (mg/L), b β2-microglobulin (mg/L), and c cystatin C-based estimated glomerular filtration rate (eGFRcys) (mL/min/1.73 m2) measured at the end of each feeding period. The reference diet was the high GI/high %carb diet

References

    1. Levey AS, Adler S, Caggiula AW, England BK, Greene T, Hunsicker LG, Kusek JW, Rogers NL, Teschan PE. Effects of dietary protein restriction on the progression of advanced renal disease in the modification of diet in renal disease study. Am J Kidney Dis. 1996;27:652–663. doi: 10.1016/S0272-6386(96)90099-2. - DOI - PubMed
    1. Pedrini MT, Levey AS, Lau J, Chalmers TC, Wang PH. The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: a meta-analysis. Ann Intern Med. 1996;124:627–632. doi: 10.7326/0003-4819-124-7-199604010-00002. - DOI - PubMed
    1. Fouque D, Laville M, Boissel JP. Low protein diets for chronic kidney disease in non diabetic adults. Cochrane Database Syst Rev. 2006;2:CD001892. - PubMed
    1. Jenkins DJ, Wolever TM, Taylor RH, Barker H, Fielden H, Baldwin JM, Bowling AC, Newman HC, Jenkins AL, Goff DV. Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr. 1981;34:362–366. - PubMed
    1. A Report of the Panel on Macronutrients, Subcommittees on Upper Reference Levels of Nutrients and Interpretation and Uses of Dietary Reference Intakes, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes . “6 Dietary Carbohydrates: Sugars and Starches.” Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients) Washington, DC: The National Academies Press; 2005.

Publication types

Associated data