Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Sep;123(9):1989-98.
doi: 10.1016/j.ophtha.2016.05.036. Epub 2016 Jul 7.

WFS1 in Optic Neuropathies: Mutation Findings in Nonsyndromic Optic Atrophy and Assessment of Clinical Severity

Affiliations

WFS1 in Optic Neuropathies: Mutation Findings in Nonsyndromic Optic Atrophy and Assessment of Clinical Severity

Joanna Grenier et al. Ophthalmology. 2016 Sep.

Abstract

Purpose: To search for WFS1 mutations in patients with optic atrophy (OA) and assess visual impairment.

Design: Retrospective molecular genetic and clinical study.

Participants: Patients with OA followed at a national referral center specialized in genetic sensory diseases.

Methods: Mutation screening in WFS1 was performed by Sanger sequencing. WFS1-positive patients were evaluated on visual acuity (VA) and retinal nerve fiber layer (RNFL) thickness using time-domain (TD) or spectral-domain (SD) optical coherence tomography (OCT). Statistical analysis was performed.

Main outcome measures: Mutation identification, VA values, and RNFL thickness in sectors.

Results: Biallelic WFS1 mutations were found in 3 of 24 unrelated patients (15%) with autosomal recessive nonsyndromic optic atrophy (arNSOA) and in 8 patients with autosomal recessive Wolfram syndrome (arWS) associated with diabetes mellitus and OA. Heterozygous mutations were found in 4 of 20 unrelated patients (20%) with autosomal dominant OA. The 4 WFS1-mutated patients of this latter group with hearing loss were diagnosed with autosomal dominant Wolfram-like syndrome (adWLS). Most patients had VA decrease, with logarithm of the minimum angle of resolution (logMAR) values lower in arWS than in arNSOA (1.530 vs. 0.440; P = 0.026) or adWLS (0.240; P = 0.006) but not differing between arNSOA and adWLS (P = 0.879). All patients had decreased RNFL thickness that was worse in arWS than in arNSOA (SD OCT, 35.50 vs. 53.80 μm; P = 0.018) or adWLS (TD-OCT, 45.84 vs. 59.33 μm; P = 0.049). The greatest difference was found in the inferior bundle. Visual acuity was negatively correlated with RNFL thickness (r = -0.89; P = 0.003 in SD OCT and r = -0.75; P = 0.01 in TD-OCT).

Conclusions: WFS1 is a gene causing arNSOA. Patients with this condition had significantly less visual impairment than those with arWS. Thus systematic screening of WFS1 must be performed in isolated, sporadic, or familial optic atrophies.

PubMed Disclaimer

Publication types

LinkOut - more resources