Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Aug 9;7(32):51943-51954.
doi: 10.18632/oncotarget.10460.

MiR-27a-3p functions as an oncogene in gastric cancer by targeting BTG2

Affiliations

MiR-27a-3p functions as an oncogene in gastric cancer by targeting BTG2

Lin Zhou et al. Oncotarget. .

Abstract

microRNA-27a (miR-27a) is frequently dysregulated in human carcinoma, including gastric cancer. The B-cell translocation gene 2 (BTG2) has been implicated in gastric carcinogenesis. However, till now, the link between miR-27a and BTG2 in gastric cancer has not been reported. Here, we found that two isoforms of mature miR-27a, miR-27a-5p and miR-27-3p, were both frequently overexpressed in gastric cancer tissues and cell lines, whereas the expression level of miR-27-3p in gastric cancer was significantly higher than that of miR-27a-5p. And overexpression of miR-27a-3p, but not miR-27a-5p, markedly promoted gastric cancer cell proliferation in vitro as well as tumor growth in vivo. Further experiments revealed that BTG2 was a direct and functional target of miR-27a-3p in gastric cancer and miR-27a-3p inhibition obviously up-regulated the expression of BTG2. In turn, overexpression of BTG2 triggered G1/S cell cycle arrest, induced subsequent apoptosis, and inhibited C-myc activation following Ras/MEK/ERK signaling pathway, which involved in the biological effects of miR-27a-3p/BTG2 axis on gastric carcinogenesis and cancer progression. Overall, these results suggested that the miR-27a-3p/BTG2 axis might represent a promising diagnostic biomarker for gastric cancer patients and could be a potential therapeutic target in the management of gastric cancer.

Keywords: BTG2; apoptosis; cell proliferation; gastric cancer; miR-27a-3p.

PubMed Disclaimer

Conflict of interest statement

The authors have no competing financial or intellectual interests.

Figures

Figure 1
Figure 1. miR-27a-3p and miR-27a-5p are overexpressed in GC tissues and cell lines
A. MiR-27a-5p expression in 20 pairs of gastric cancer tissue (Tumor) and their corresponding nontumorous tissue (NT). MiR-27a-5p expression levels were calculated by the MiR-27a-5p/U6 expression ratio (i.e., 2-ΔCt). (p< 0.0001, Mann–Whitney test). B. Comparison of MiR-27a-5p expression level between gastric cancer tissues and their corresponding non-tumorous tissues. C. MiR-27a-3p expression in20 pairs of gastric cancer tissue (Tumor) and their corresponding nontumorous tissue (NT). MiR-27a-3p expression levels were calculated by the MiR-27a-3p/U6 expression ratio (i.e., 2−ΔCt). (p< 0.0001, Mann–Whitney test). D. Comparison of MiR-27a-3p expression level between gastric cancer tissues and their corresponding non-tumorous tissues. E. MiR-27a-5p expression in the NT, Tumor, normal gastric cancer cell line GES-1 and gastric cancer cell lines AGS, NCI-N87, BGC-823, HGC-27, SGC-7901 and MGC-803. F. MiR-27a-3p expression in the NT, Tumor, normal gastric cancer cell line GES-1 and gastric cancer cell lines AGS, NCI-N87, BGC-823, HGC-27, SGC-7901 and MGC-803. Case numbers were listed below the chart of (A) and (C).
Figure 2
Figure 2. miR-27a-3p promotes GC cell growth in vitro and in vivo
A. The verification of plasmid activation in MGC803 and NCI-N87 cells. B. Growth curve of GES-1 cells treat with miR-27a (+)/pEGFP-C1 or pEGFP-C1. C. Growth curve of MGC-803 cells treat with miR-27a (−)/pEGFP-C1 or pEGFP-C1. D. Sphere formation assay of stable cell lines in Soft agar. E. Sphere formation assay of gastric or gastric cancer cells. Equal numbers cell lines were seeded into soft agar in 6-well. After 2 weeks of culture, the number of microspheres was counted. F. GES-1/Vector and GES-1/miR-27a(+) subcutaneous xenograft in nude mice. G. MGC-803/Vector and MGC-803/miR-27a(−) subcutaneous xenograft in nude mice. H. Growth curve of GES-1, BGC-823, and MGC-803 cells treat with miR-27a-3p mimics or inhibitor and miR-27a-5p mimics or inhibitor.
Figure 3
Figure 3. BTG2 is a direct functional target of miR-27a-3p in GC cells
A. Schematic representation of the binding between miR-27-3p and BTG2 with mutated sites labeled with gray shading. B. Expression patterns of BTG2 with miR-27a-3p in gastric cancer tissues (p< 0.0001, spearman correlation) All data were presented as mean±SD and as representative of an average of three independent experiments. C. Verify the activation of BTG2-pcDNA by Real-time PCR and western blot. D. The effect of miR-27a-3p on BTG2 luciferase activity by dual-luciferase assay. Data were calculated by Student t test (**p< 0.01, ***p< 0.001). E. Western Blotting was performed to determine the protein expression level of BTG2 in miR-27a-3p-upregulated or miR-27a-3p-inhibited cells, β-actin was used as the loading control. All data were presented as means ± SD and as representative of an average of three measurements.
Figure 4
Figure 4. miR-27a-3p/BTG2 axis regulates cell cycle progression in GC cells
A. Flow cytometry was performed to determine the cycle arresting of GES-1. B. Flow cytometry was performed to determine the sub-G1 of GES-1. C. Western Blotting was performed to determine the protein expression level of cyclin D and cyclin E. β-actin was used as the loading control.
Figure 5
Figure 5. miR-27a-3p/BTG2 axis regulates apoptosis in GC cells
A. TUNEL staining image of intervertebral disc histotomy from the first-batch SD rats. Original magnification is all 100×. B. Western Blotting was performed to determine the protein expression level of caspase3 and PARP1. β-actin was used as the loading control.
Figure 6
Figure 6. BTG2 inhibits C-myc expression through Ras/MEK/ERK pathway in GC cells
A. Expression patterns of BTG2 with C-myc in gastric cancer tissues (p< 0.0001, spearman correlation) All data were presented as means±SD and as representative of an average of three independent experiments. B. Western Blotting was performed to determine the protein expression level of BTG2, Ras, MEK, P-MEK, ERK, P-ERK, c-Myc. β-actin was used as the loading control.

Similar articles

Cited by

References

    1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300. - PubMed
    1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90. - PubMed
    1. Crew KD, Neugut AI. Epidemiology of gastric cancer. World journal of gastroenterology. 2006;12:354–362. - PMC - PubMed
    1. Liu T, Tang H, Lang Y, Liu M, Li X. MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer letters. 2009;273:233–242. - PubMed
    1. Yang Q, Jie Z, Ye S, Li Z, Han Z, Wu J, Yang C, Jiang Y. Genetic variations in miR-27a gene decrease mature miR-27a level and reduce gastric cancer susceptibility. Oncogene. 2012;33:193–202. - PubMed