Superelasticity and force plateau of nickel-titanium springs: an in vitro study
- PMID: 27409653
- PMCID: PMC4944729
- DOI: 10.1590/2177-6709.21.3.046-055.oar
Superelasticity and force plateau of nickel-titanium springs: an in vitro study
Abstract
Objective: This paper analyzed whether nickel-titanium closed coil springs (NTCCS) have a different superelastic (SE) behavior according to activation and whether their force plateau corresponds to that informed by the manufacturer.
Methods: A total of 160 springs were divided into 16 subgroups according to their features and activated proportionally to the length of the extensible part (NiTi) of the spring (Y). The force values measured were analyzed to determine SE rates and force plateaus, which were mathematically calculated. These plateaus were compared to those informed by the manufacturer. Analysis of variance was accomplished followed by Tukey post-hoc test to detect and analyze differences between groups.
Results: All subgroups were SE at the activation of 400% of Y length, except for: subgroups 4B and 3A, which were SE at 300%; subgroups 4E and 4G, which were SE at 500%; and subgroup 3C, which was SE at 600%. Subgroup 3B did not show a SE behavior. Force plateaus depended on activation and, in some subgroups and some activations, were similar to the force informed.
Conclusions: Most of the springs showed SE behavior at 400% of activation. Force plateaus are difficult to compare due to lack of information provided by manufacturers.
Objetivo:: o presente artigo analisou se as molas helicoidais fechadas de níquel-titânio apresentam superelasticidade (SE), de acordo com a ativação, e se o platô de força medido corresponde ao informado pelo fabricante.
Material e Métodos:: 160 molas foram divididas em 16 subgrupos, de acordo com suas características, e foram ativadas proporcionalmente ao comprimento da parte extensível (NiTi) da mola (Y). Os valores de força obtidos foram analisados para determinar as taxas de SE e os platôs de força, os quais foram calculados matematicamente - sendo esses platôs comparados aos informados pelos fabricantes. Uma análise de variância foi realizada, seguida do teste post-hoc de Tukey, para detectar e analisar as diferenças entre os grupos.
Resultados:: todos os subgrupos apresentaram SE em ativação de 400% do comprimento Y, com exceção dos subgrupos 4B e 3A (que apresentaram SE a 300%), dos subgrupos 4E e 4G (com SE a 500%) e do subgrupo 3C (que apresentou SE na ativação de 600%). O subgrupo 3B não apresentou comportamento superelástico. Os platôs de força dependeram da ativação e em alguns subgrupos, em determinadas ativações, foram semelhantes à força informada pelo fabricante.
Conclusões:: a maioria das molas apresentou comportamento superelástico na ativação de 400%. Os platôs de força são difíceis de ser comparados, devido à falta de informações por parte dos fabricantes.
Figures








Similar articles
-
Deformation of nickel-titanium closed coil springs: an in vitro study.Dental Press J Orthod. 2017 Feb;22(1):38-46. doi: 10.1590/2177-6709.22.1.038-046.oar. Dental Press J Orthod. 2017. PMID: 28444020 Free PMC article.
-
Mechanical behavior and clinical application of nickel-titanium closed-coil springs under different stress levels and mechanical loading cycles.Am J Orthod Dentofacial Orthop. 2010 May;137(5):671-8. doi: 10.1016/j.ajodo.2008.06.029. Am J Orthod Dentofacial Orthop. 2010. PMID: 20451787
-
In-vivo force decay of nickel-titanium closed-coil springs.Am J Orthod Dentofacial Orthop. 2014 Apr;145(4):505-13. doi: 10.1016/j.ajodo.2013.12.023. Am J Orthod Dentofacial Orthop. 2014. PMID: 24703289 Free PMC article.
-
The effect of temperature change on the load value of Japanese NiTi coil springs in the superelastic range.Am J Orthod Dentofacial Orthop. 1996 Nov;110(5):553-8. doi: 10.1016/s0889-5406(96)70065-3. Am J Orthod Dentofacial Orthop. 1996. PMID: 8922516
-
Superelastic nickel-titanium wires.Br J Orthod. 1992 Nov;19(4):319-22. doi: 10.1179/bjo.19.4.319. Br J Orthod. 1992. PMID: 1463708 Review.
Cited by
-
The Effects of Temperature and Time of Heat Treatment on Thermo-Mechanical Properties of Custom-Made NiTi Orthodontic Closed Coil Springs.Materials (Basel). 2022 Apr 26;15(9):3121. doi: 10.3390/ma15093121. Materials (Basel). 2022. PMID: 35591455 Free PMC article.
-
Deformation of nickel-titanium closed coil springs: an in vitro study.Dental Press J Orthod. 2017 Feb;22(1):38-46. doi: 10.1590/2177-6709.22.1.038-046.oar. Dental Press J Orthod. 2017. PMID: 28444020 Free PMC article.
-
The effect of orthodontic clinical use on the mechanical characteristics of nickel-titanium closed-coil springs.J Int Med Res. 2019 Feb;47(2):803-814. doi: 10.1177/0300060518811765. Epub 2019 Jan 7. J Int Med Res. 2019. PMID: 30616411 Free PMC article.
-
Can we expect similar behavior among CuNiTi 35°C wires?Dental Press J Orthod. 2021 May 17;26(2):e211945. doi: 10.1590/2177-6709.26.2.e211945.oar. eCollection 2021. Dental Press J Orthod. 2021. PMID: 34008740 Free PMC article.
-
Effects of reversing the coiling direction on the force-deflection characteristics of nickel-titanium closed-coil springs.Korean J Orthod. 2019 Jul;49(4):214-221. doi: 10.4041/kjod.2019.49.4.214. Epub 2019 Jul 22. Korean J Orthod. 2019. PMID: 31367576 Free PMC article.
References
-
- Burstone CJ, Qin B, Morton JY. Chinese NiTi wire--a new orthodontic alloy. Am J Orthod. 1985 Jun; - PubMed
-
- Miura F, Mogi M, Ohura Y, Hamanaka H. The super-elastic property of the Japanese NiTi alloy wire for use in orthodontics. Am J Orthod Dentofacial Orthop. 1986 Jul;90(1):1–10. - PubMed
-
- Andreasen GF, Hilleman TB. An evaluation of 55 cobalt substituted Nitinol wire for use in orthodontics. J Am Dent Assoc. 1971 Jun;82(6):1373–1375. - PubMed
-
- Gangbing S, Lam PC, Srivatsan TS, Kelly B, Agrawa BN. Application of shape memory alloy wire actuator for precision position control of a composite beam. J Mat Eng Perf. 2000;9:330–333.
-
- Khier SE, Brantley WA, Fournelle RA. Bending properties of superelastic and nonsuperelastic nickel-titanium orthodontic wires. Am J Orthod Dentofacial Orthop. 1991 Apr;99(4):310–318. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources