Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas
- PMID: 27410061
- DOI: 10.1364/OE.24.011299
Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas
Abstract
We report the generation of free space terahertz (THz) pulses with energy up to 8.3 ± 0.2 µJ from an encapsulated interdigitated ZnSe Large Aperture Photo-Conductive Antenna (LAPCA). An aperture of 12.2 cm2 is illuminated using a 400 nm pump laser with multi-mJ energies at 10 Hz repetition rate. The calculated THz peak electric field is 331 ± 4 kV/cm with a spectrum characterized by a median frequency of 0.28 THz. Given its relatively low frequency, this THz field will accelerate charged particles efficiently having very large ponderomotive energy of 15 ± 1 eV for electrons in vacuum. The scaling of the emission is studied with respect to the dimensions of the antenna, and it is observed that the capacitance of the LAPCA leads to a severe decrease in and distortion of the biasing voltage pulse, fundamentally limiting the maximum applied bias field and consequently the maximum energy of the radiated THz pulses. In order to demonstrate the advantages of this source in the strong field regime, an open-aperture Z-scan experiment was performed on n-doped InGaAs, which showed significant absorption bleaching.
Similar articles
-
Intense terahertz generation from photoconductive antennas.Front Optoelectron. 2021 Mar;14(1):64-93. doi: 10.1007/s12200-020-1081-4. Epub 2021 Jan 5. Front Optoelectron. 2021. PMID: 36637784 Free PMC article. Review.
-
MV/cm terahertz pulses from relativistic laser-plasma interaction characterized by nonlinear terahertz absorption bleaching in n-doped InGaAs.Opt Express. 2017 Jul 24;25(15):17511-17523. doi: 10.1364/OE.25.017511. Opt Express. 2017. PMID: 28789242
-
Tunable narrowband THz pulse generation in scalable large area photoconductive antennas.Opt Express. 2011 Sep 26;19(20):19114-21. doi: 10.1364/OE.19.019114. Opt Express. 2011. PMID: 21996852
-
Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna.Opt Express. 2010 Apr 26;18(9):9251-7. doi: 10.1364/OE.18.009251. Opt Express. 2010. PMID: 20588772
-
Terahertz aqueous photonics.Front Optoelectron. 2021 Mar;14(1):37-63. doi: 10.1007/s12200-020-1070-7. Epub 2020 Dec 29. Front Optoelectron. 2021. PMID: 36637782 Free PMC article. Review.
Cited by
-
Intense terahertz radiation: generation and application.Front Optoelectron. 2021 Mar;14(1):4-36. doi: 10.1007/s12200-020-1052-9. Epub 2020 Dec 23. Front Optoelectron. 2021. PMID: 36637780 Free PMC article. Review.
-
Stokes-Mueller method for comprehensive characterization of coherent terahertz waves.Sci Rep. 2020 Sep 22;10(1):15426. doi: 10.1038/s41598-020-72049-9. Sci Rep. 2020. PMID: 32963295 Free PMC article.
-
Ionizing terahertz waves with 260 MV/cm from scalable optical rectification.Light Sci Appl. 2024 May 27;13(1):118. doi: 10.1038/s41377-024-01462-w. Light Sci Appl. 2024. PMID: 38802347 Free PMC article.
-
Optical Pump-Terahertz Probe Diagnostics of the Carrier Dynamics in Diamonds.Materials (Basel). 2023 Dec 26;17(1):119. doi: 10.3390/ma17010119. Materials (Basel). 2023. PMID: 38203973 Free PMC article.
-
Ultrafast strong-field terahertz nonlinear nanometasurfaces.Nanophotonics. 2023 Feb 15;12(13):2517-2526. doi: 10.1515/nanoph-2022-0766. eCollection 2023 Jun. Nanophotonics. 2023. PMID: 39633754 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources