Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr;30(4):485-90.

[CO-TRANSPLANTATION OF MOUSE EPIDERMIS AND DERMIS CELLS IN INDUCING HAIR FOLLICLE REGENERATION]

[Article in Chinese]
  • PMID: 27411280

[CO-TRANSPLANTATION OF MOUSE EPIDERMIS AND DERMIS CELLS IN INDUCING HAIR FOLLICLE REGENERATION]

[Article in Chinese]
Lin Chen et al. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2016 Apr.

Abstract

Objective: To investigate the co-transplantation of C57-green fluorescent protein (GFP) mouse epidermis and dermis cells subcutaneously to induce the hair follicle regeneration.

Methods: C57-GFP mouse epidermis and dermis were harvested for isolation the mouse epidermis and dermis cells. The morphology of epidermis and dermis mixed cells at ratio of 1:1 of adult mouse, dermis cells of adult mouse, cultured 3rd generation dermis cells were observed by fluorescence microscope. Immunocytochemistry staining was used to detect hair follicle stem cells markers in cultured 3rd generation dermis cells from new born C57-GFP mouse. And then the epidermis and dermis mixed cells of adult mouse (group A), dermis cells of adult mouse (group B), cultured 3rd generation dermis cells of new born mouse (group C), and saline (group D) were transplanted subcutaneously into Balb/c nude mice. The skin surface of nude mice were observed at 4, 5, 6 weeks of transplantation and hair follicle formation were detected at 6 weeks by immunohistochemistry staining.

Results: The isolated C57-GFP mouse epidermis and dermis cells strongly expressed the GFP under the fluorescence microscope. Immunocytochemistry staining for hair follicle stem cells markers in cultured 3rd generation dermis cells showed strong expression of Vimentin and α-smooth muscle actin, indicating that the cells were dermal sheath cells; some cells expressed CD133, Versican, and cytokeratin 15. After transplanted for 4-6 weeks, the skin became black at the injection site in group A, indicating new hair follicle formation. However, no color change was observed in groups B, C, and D. Immunohistochemical staining showed that new complete hair follicles structures formed in group A. GFP expression could be only observed in the hair follicle dermal sheath and outer root sheath in group B, and it could also be observed in the hair follicle dermal sheath, outer root sheath, dermal papilla cells, and sweat gland in group C. The expression of GFP was negative in group D.

Conclusion: Co-transplantation of mouse epidermis and dermis cells can induce the hair follicle regeneration by means of interaction of each other. And transplantation of isolated dermis cells or cultured dermis cells individually only partly involved in the hair follicles formation.

PubMed Disclaimer