Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Dec;48(12):2544-2554.
doi: 10.1249/MSS.0000000000001037.

Metabolic Responses and Pacing Strategies during Successive Sprint Skiing Time Trials

Affiliations

Metabolic Responses and Pacing Strategies during Successive Sprint Skiing Time Trials

Erik Andersson et al. Med Sci Sports Exerc. 2016 Dec.

Abstract

Purpose: This study aimed to examine the metabolic responses and pacing strategies during the performance of successive sprint time trials (STTs) in cross-country skiing.

Methods: Ten well-trained male cross-country skiers performed four self-paced 1300-m STTs on a treadmill, each separated by 45 min of recovery. The simulated sprint time trial (STT) course was divided into three flat (1°) sections (S1, S3, and S5) involving the double poling subtechnique interspersed with two uphill (7°) sections (S2 and S4) involving the diagonal stride subtechnique. Treadmill velocity and V˙O2 were monitored continuously, and gross efficiency was used to estimate the anaerobic energy supply.

Results: The individual trial-to-trial variability in STTs performance time was 1.3%, where variations in O2 deficit and V˙O2 explained 69% (P < 0.05) and 11% (P > 0.05) of the variation in performance. The first and the last STTs were equally fast (228 ± 10 s) and ~1.3% faster than the second and the third STTs (P < 0.05). These two fastest STTs were associated with a 14% greater O2 deficit (P < 0.05), whereas the average V˙O2 was similar during all four STTs (86% ± 3% of V˙O2max). Positive pacing was used throughout all STTs, with significantly less time spent on the first than second course half. In addition, metabolic rates were substantially higher (~30%) for uphill than for flat skiing, indicating that pacing was regulated to the terrain.

Conclusions: The fastest STTs were characterized primarily by a greater anaerobic energy production, which also explained 69% of the individual variation in performance. Moreover, the skiers used positive pacing and a variable exercise intensity according to the course profile, yielding an irregular distribution of anaerobic energy production.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources