Automatic segmentation approach to extracting neonatal cerebral ventricles from 3D ultrasound images
- PMID: 27428629
- DOI: 10.1016/j.media.2016.06.038
Automatic segmentation approach to extracting neonatal cerebral ventricles from 3D ultrasound images
Abstract
Preterm neonates with a very low birth weight of less than 1,500 g are at increased risk for developing intraventricular hemorrhage (IVH). Progressive ventricle dilatation of IVH patients may cause increased intracranial pressure, leading to neurological damage, such as neurodevelopmental delay and cerebral palsy. The technique of 3D ultrasound (US) imaging has been used to quantitatively monitor the ventricular volume in IVH neonates, which may elucidate the ambiguity surrounding the timing of interventions in these patients as 2D clinical US imaging relies on linear measurement and visual estimation of ventricular dilation from a series of 2D slices. To translate 3D US imaging into the clinical setting, a fully automated segmentation algorithm is necessary to extract the ventricular system from 3D neonatal brain US images. In this paper, an automatic segmentation approach is proposed to delineate lateral ventricles of preterm neonates from 3D US images. The proposed segmentation approach makes use of phase congruency map, multi-atlas initialization technique, atlas selection strategy, and a multiphase geodesic level-sets (MGLS) evolution combined with a spatial shape prior derived from multiple pre-segmented atlases. Experimental results using 30 IVH patient images show that the proposed GPU-implemented approach is accurate in terms of the Dice similarity coefficient (DSC), the mean absolute surface distance (MAD), and maximum absolute surface distance (MAXD). To the best of our knowledge, this paper reports the first study on automatic segmentation of the ventricular system of premature neonatal brains from 3D US images.
Keywords: 3D Ultrasound imaging; Automatic neonatal cerebral ventricle segmentation; Convex optimization; Multi-phase geodesic level-sets.
Copyright © 2016 Elsevier B.V. All rights reserved.
Similar articles
-
User-guided segmentation of preterm neonate ventricular system from 3-D ultrasound images using convex optimization.Ultrasound Med Biol. 2015 Feb;41(2):542-56. doi: 10.1016/j.ultrasmedbio.2014.09.019. Epub 2014 Dec 23. Ultrasound Med Biol. 2015. PMID: 25542486
-
3D MR ventricle segmentation in pre-term infants with post-hemorrhagic ventricle dilatation (PHVD) using multi-phase geodesic level-sets.Neuroimage. 2015 Sep;118:13-25. doi: 10.1016/j.neuroimage.2015.05.099. Epub 2015 Jun 10. Neuroimage. 2015. PMID: 26070262
-
Automated 3D U-net based segmentation of neonatal cerebral ventricles from 3D ultrasound images.Med Phys. 2022 Feb;49(2):1034-1046. doi: 10.1002/mp.15432. Epub 2022 Jan 12. Med Phys. 2022. PMID: 34958147
-
Longitudinal Analysis of Pre-Term Neonatal Cerebral Ventricles From 3D Ultrasound Images Using Spatial-Temporal Deformable Registration.IEEE Trans Med Imaging. 2017 Apr;36(4):1016-1026. doi: 10.1109/TMI.2016.2643635. Epub 2016 Dec 22. IEEE Trans Med Imaging. 2017. PMID: 28026756
-
3D Segmentation Algorithms for Computerized Tomographic Imaging: a Systematic Literature Review.J Digit Imaging. 2018 Dec;31(6):799-850. doi: 10.1007/s10278-018-0101-z. J Digit Imaging. 2018. PMID: 29915942 Free PMC article.
Cited by
-
Quantitative 3-D head ultrasound measurements of ventricle volume to determine thresholds for preterm neonates requiring interventional therapies following posthemorrhagic ventricle dilatation.J Med Imaging (Bellingham). 2018 Apr;5(2):026001. doi: 10.1117/1.JMI.5.2.026001. Epub 2018 Jun 26. J Med Imaging (Bellingham). 2018. PMID: 29963579 Free PMC article.
-
Automatically measuring brain ventricular volume within PACS using artificial intelligence.PLoS One. 2018 Mar 15;13(3):e0193152. doi: 10.1371/journal.pone.0193152. eCollection 2018. PLoS One. 2018. PMID: 29543817 Free PMC article.
-
Automatic segmentation of ventricular volume by 3D ultrasonography in post haemorrhagic ventricular dilatation among preterm infants.Sci Rep. 2021 Jan 12;11(1):567. doi: 10.1038/s41598-020-80783-3. Sci Rep. 2021. PMID: 33436974 Free PMC article.
-
Association of germinal matrix hemorrhage volume with neurodevelopment and hydrocephalus.J Neurosurg Pediatr. 2024 Jul 5;34(4):347-356. doi: 10.3171/2024.3.PEDS22376. Print 2024 Oct 1. J Neurosurg Pediatr. 2024. PMID: 38968622 Free PMC article.
-
Precision Medicine in Neonates: A Tailored Approach to Neonatal Brain Injury.Front Pediatr. 2021 May 19;9:634092. doi: 10.3389/fped.2021.634092. eCollection 2021. Front Pediatr. 2021. PMID: 34095022 Free PMC article. Review.
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources