Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Sep;6(9):1052-67.
doi: 10.1158/2159-8290.CD-15-1227. Epub 2016 Jul 17.

Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types

Siddhartha P Kar  1 Jonathan Beesley  2 Ali Amin Al Olama  3 Kyriaki Michailidou  3 Jonathan Tyrer  4 ZSofia Kote-Jarai  5 Kate Lawrenson  6 Sara Lindstrom  7 Susan J Ramus  6 Deborah J Thompson  3 ABCTB InvestigatorsAdam S Kibel  8 Agnieszka Dansonka-Mieszkowska  9 Agnieszka Michael  10 Aida K Dieffenbach  11 Aleksandra Gentry-Maharaj  12 Alice S Whittemore  13 Alicja Wolk  14 Alvaro Monteiro  15 Ana Peixoto  16 Andrzej Kierzek  10 Angela Cox  17 Anja Rudolph  18 Anna Gonzalez-Neira  19 Anna H Wu  6 Annika Lindblom  20 Anthony Swerdlow  21 AOCS Study Group & Australian Cancer Study (Ovarian Cancer)APCB BioResourceArgyrios Ziogas  22 Arif B Ekici  23 Barbara Burwinkel  24 Beth Y Karlan  25 Børge G Nordestgaard  26 Carl Blomqvist  27 Catherine Phelan  15 Catriona McLean  28 Celeste Leigh Pearce  29 Celine Vachon  30 Cezary Cybulski  31 Chavdar Slavov  32 Christa Stegmaier  33 Christiane Maier  34 Christine B Ambrosone  35 Claus K Høgdall  36 Craig C Teerlink  37 Daehee Kang  38 Daniel C Tessier  39 Daniel J Schaid  40 Daniel O Stram  6 Daniel W Cramer  41 David E Neal  42 Diana Eccles  43 Dieter Flesch-Janys  44 Digna R Velez Edwards  45 Dominika Wokozorczyk  31 Douglas A Levine  46 Drakoulis Yannoukakos  47 Elinor J Sawyer  48 Elisa V Bandera  49 Elizabeth M Poole  50 Ellen L Goode  30 Elza Khusnutdinova  51 Estrid Høgdall  52 Fengju Song  53 Fiona Bruinsma  54 Florian Heitz  55 Francesmary Modugno  56 Freddie C Hamdy  57 Fredrik Wiklund  58 Graham G Giles  59 Håkan Olsson  60 Hans Wildiers  61 Hans-Ulrich Ulmer  62 Hardev Pandha  10 Harvey A Risch  63 Hatef Darabi  58 Helga B Salvesen  64 Heli Nevanlinna  65 Henrik Gronberg  58 Hermann Brenner  66 Hiltrud Brauch  67 Hoda Anton-Culver  22 Honglin Song  4 Hui-Yi Lim  68 Iain McNeish  69 Ian Campbell  70 Ignace Vergote  71 Jacek Gronwald  31 Jan Lubiński  31 Janet L Stanford  72 Javier Benítez  19 Jennifer A Doherty  73 Jennifer B Permuth  15 Jenny Chang-Claude  18 Jenny L Donovan  74 Joe Dennis  3 Joellen M Schildkraut  75 Johanna Schleutker  76 John L Hopper  77 Jolanta Kupryjanczyk  9 Jong Y Park  15 Jonine Figueroa  78 Judith A Clements  79 Julia A Knight  80 Julian Peto  81 Julie M Cunningham  82 Julio Pow-Sang  15 Jyotsna Batra  79 Kamila Czene  58 Karen H Lu  83 Kathleen Herkommer  84 Kay-Tee Khaw  85 kConFab InvestigatorsKeitaro Matsuo  86 Kenneth Muir  87 Kenneth Offitt  88 Kexin Chen  53 Kirsten B Moysich  89 Kristiina Aittomäki  90 Kunle Odunsi  91 Lambertus A Kiemeney  92 Leon F A G Massuger  93 Liesel M Fitzgerald  54 Linda S Cook  94 Lisa Cannon-Albright  95 Maartje J Hooning  96 Malcolm C Pike  97 Manjeet K Bolla  3 Manuel Luedeke  34 Manuel R Teixeira  98 Marc T Goodman  99 Marjanka K Schmidt  100 Marjorie Riggan  101 Markus Aly  102 Mary Anne Rossing  72 Matthias W Beckmann  103 Matthieu Moisse  104 Maureen Sanderson  105 Melissa C Southey  106 Michael Jones  107 Michael Lush  3 Michelle A T Hildebrandt  108 Ming-Feng Hou  109 Minouk J Schoemaker  107 Montserrat Garcia-Closas  110 Natalia Bogdanova  111 Nazneen Rahman  112 NBCS InvestigatorsNhu D Le  113 Nick Orr  114 Nicolas Wentzensen  78 Nora Pashayan  115 Paolo Peterlongo  116 Pascal Guénel  117 Paul Brennan  118 Paula Paulo  16 Penelope M Webb  119 Per Broberg  120 Peter A Fasching  103 Peter Devilee  121 Qin Wang  3 Qiuyin Cai  122 Qiyuan Li  123 Radka Kaneva  124 Ralf Butzow  125 Reidun Kristin Kopperud  64 Rita K Schmutzler  126 Robert A Stephenson  127 Robert J MacInnis  128 Robert N Hoover  78 Robert Winqvist  129 Roberta Ness  130 Roger L Milne  128 Ruth C Travis  131 Sara Benlloch  3 Sara H Olson  97 Shannon K McDonnell  40 Shelley S Tworoger  50 Sofia Maia  16 Sonja Berndt  78 Soo Chin Lee  132 Soo-Hwang Teo  133 Stephen N Thibodeau  40 Stig E Bojesen  134 Susan M Gapstur  135 Susanne Krüger Kjær  136 Tanja Pejovic  137 Teuvo L J Tammela  138 GENICA NetworkPRACTICAL consortiumThilo Dörk  139 Thomas Brüning  140 Tiina Wahlfors  141 Tim J Key  131 Todd L Edwards  142 Usha Menon  12 Ute Hamann  62 Vanio Mitev  124 Veli-Matti Kosma  143 Veronica Wendy Setiawan  6 Vessela Kristensen  144 Volker Arndt  145 Walther Vogel  146 Wei Zheng  122 Weiva Sieh  13 William J Blot  147 Wojciech Kluzniak  31 Xiao-Ou Shu  122 Yu-Tang Gao  148 Fredrick Schumacher  6 Matthew L Freedman  149 Andrew Berchuck  101 Alison M Dunning  4 Jacques Simard  150 Christopher A Haiman  6 Amanda Spurdle  151 Thomas A Sellers  15 David J Hunter  7 Brian E Henderson  6 Peter Kraft  7 Stephen J Chanock  78 Fergus J Couch  82 Per Hall  58 Simon A Gayther  6 Douglas F Easton  152 Georgia Chenevix-Trench  2 Rosalind Eeles  153 Paul D P Pharoah  152 Diether Lambrechts  104
Affiliations

Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types

Siddhartha P Kar et al. Cancer Discov. 2016 Sep.

Abstract

Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P < 10(-8) seven new cross-cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type-specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P < 10(-5) in the three-cancer meta-analysis.

Significance: We demonstrate that combining large-scale GWA meta-analysis findings across cancer types can identify completely new risk loci common to breast, ovarian, and prostate cancers. We show that the identification of such cross-cancer risk loci has the potential to shed new light on the shared biology underlying these hormone-related cancers. Cancer Discov; 6(9); 1052-67. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 932.

PubMed Disclaimer

Conflict of interest statement

The authors disclose no potential conflicts of interest.

Figures

Figure 1
Figure 1
Manhattan plot of results from the combined breast, ovarian, and prostate cancer meta-analysis. The black and gray dots represent the 2,231 variants nominally associated (P < 0.05) with every cancer type individually that had the same direction of effect across all three cancers. The red line corresponds to a threshold of P = 10−8. Eighteen independent loci were identified at this threshold. The green dots highlight index SNPs at 11 loci out of these 18 where model selection using ASSET confirmed contribution from all three cancer types to the association signal and that remained at P < 10−8 after adjusting for the controls shared between the breast and ovarian cancer studies. Gene names identify the three loci out of the 11 that were > 1 Mb away from previously identified index SNPs for any of the three cancers.
Figure 2
Figure 2
Forest plots of odds ratio estimates for the new cross-cancer index SNPs (> 1 Mb from known index SNPs) for susceptibility to (A) breast, ovarian, and prostate cancer and (B) breast and ovarian cancer, and breast and prostate cancer. Error bars indicate 95% confidence intervals and het_P is the P-value calculated from Cochran’s Q-test for heterogeneity.
Figure 3
Figure 3
Regional association plot of results from the three-cancer meta-analysis for the rs1469713/19p13 breast, ovarian, and prostate cancer susceptibility locus. The black dots represent all variants nominally associated (P < 0.05) with every cancer type individually that had the same direction of effect across all three cancers. The purple dashed line corresponds to a threshold of P = 10−8. Tracks immediately below the regional association plot show the locations of enhancers in breast (pink), ovarian (green), and prostate (blue) cell types. Interactions derived from ChIA-PET experiments, which have only been assayed in breast cells, are labeled as experimental interactions. Where the same gene is predicted to be a target of enhancers that intersect with the same P < 10−8 SNP in all three cell types (or two for the 2q13 region), it is shown in red. All other genes in the region are in gray. The corresponding P < 10−8 SNP locations are marked by grey vertical stripes. The lower tracks show arcs between enhancers and target genes for both computationally predicted and experimentally derived interactions. Arc colors reflect the cell type in which the enhancer-promoter pair was identified.
Figure 4
Figure 4
Regional association plot of results from the three-cancer meta-analysis for the rs17041869/2q13 breast, ovarian, and prostate cancer susceptibility locus. The black dots represent all variants nominally associated (P < 0.05) with every cancer type individually that had the same direction of effect across all three cancers. The purple dashed line corresponds to a threshold of P = 10−8. Tracks immediately below the regional association plot show the locations of enhancers in breast (pink), ovarian (green), and prostate (blue) cell types. Interactions derived from ChIA-PET experiments, which have only been assayed in breast cells, are labeled as experimental interactions. Where the same gene is predicted to be a target of enhancers that intersect with the same P < 10−8 SNP in all three cell types (or two for the 2q13 region), it is shown in red. All other genes in the region are in gray. The corresponding P < 10−8 SNP locations are marked by grey vertical stripes. The lower tracks show arcs between enhancers and target genes for both computationally predicted and experimentally derived interactions. Arc colors reflect the cell type in which the enhancer-promoter pair was identified.

Similar articles

  • Bromodomain protein 4 discriminates tissue-specific super-enhancers containing disease-specific susceptibility loci in prostate and breast cancer.
    Zuber V, Bettella F, Witoelar A; PRACTICAL Consortium; CRUK GWAS; BCAC Consortium; TRICL Consortium; Andreassen OA, Mills IG, Urbanucci A. Zuber V, et al. BMC Genomics. 2017 Mar 31;18(1):270. doi: 10.1186/s12864-017-3620-y. BMC Genomics. 2017. PMID: 28359301 Free PMC article.
  • Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus.
    Zeng C, Guo X, Long J, Kuchenbaecker KB, Droit A, Michailidou K, Ghoussaini M, Kar S, Freeman A, Hopper JL, Milne RL, Bolla MK, Wang Q, Dennis J, Agata S, Ahmed S, Aittomäki K, Andrulis IL, Anton-Culver H, Antonenkova NN, Arason A, Arndt V, Arun BK, Arver B, Bacot F, Barrowdale D, Baynes C, Beeghly-Fadiel A, Benitez J, Bermisheva M, Blomqvist C, Blot WJ, Bogdanova NV, Bojesen SE, Bonanni B, Borresen-Dale AL, Brand JS, Brauch H, Brennan P, Brenner H, Broeks A, Brüning T, Burwinkel B, Buys SS, Cai Q, Caldes T, Campbell I, Carpenter J, Chang-Claude J, Choi JY, Claes KB, Clarke C, Cox A, Cross SS, Czene K, Daly MB, de la Hoya M, De Leeneer K, Devilee P, Diez O, Domchek SM, Doody M, Dorfling CM, Dörk T, Dos-Santos-Silva I, Dumont M, Dwek M, Dworniczak B, Egan K, Eilber U, Einbeigi Z, Ejlertsen B, Ellis S, Frost D, Lalloo F; EMBRACE; Fasching PA, Figueroa J, Flyger H, Friedlander M, Friedman E, Gambino G, Gao YT, Garber J, García-Closas M, Gehrig A, Damiola F, Lesueur F, Mazoyer S, Stoppa-Lyonnet D; behalf of GEMO Study Collaborators; Giles GG, Godwin AK, Goldgar DE, González-Neira A, Greene MH, Guénel P, Haeberle L, Haiman CA, Hallberg E, Hamann U, Hansen TV, Hart S, Hartikainen JM, Ha… See abstract for full author list ➔ Zeng C, et al. Breast Cancer Res. 2016 Jun 21;18(1):64. doi: 10.1186/s13058-016-0718-0. Breast Cancer Res. 2016. PMID: 27459855 Free PMC article.
  • Multiple loci with different cancer specificities within the 8q24 gene desert.
    Ghoussaini M, Song H, Koessler T, Al Olama AA, Kote-Jarai Z, Driver KE, Pooley KA, Ramus SJ, Kjaer SK, Hogdall E, DiCioccio RA, Whittemore AS, Gayther SA, Giles GG, Guy M, Edwards SM, Morrison J, Donovan JL, Hamdy FC, Dearnaley DP, Ardern-Jones AT, Hall AL, O'Brien LT, Gehr-Swain BN, Wilkinson RA, Brown PM, Hopper JL, Neal DE, Pharoah PD, Ponder BA, Eeles RA, Easton DF, Dunning AM; UK Genetic Prostate Cancer Study Collaborators/British Association of Urological Surgeons' Section of Oncology; UK ProtecT Study Collaborators. Ghoussaini M, et al. J Natl Cancer Inst. 2008 Jul 2;100(13):962-6. doi: 10.1093/jnci/djn190. Epub 2008 Jun 24. J Natl Cancer Inst. 2008. PMID: 18577746 Free PMC article.
  • Common Genetic Variation and Susceptibility to Ovarian Cancer: Current Insights and Future Directions.
    Kar SP, Berchuck A, Gayther SA, Goode EL, Moysich KB, Pearce CL, Ramus SJ, Schildkraut JM, Sellers TA, Pharoah PDP. Kar SP, et al. Cancer Epidemiol Biomarkers Prev. 2018 Apr;27(4):395-404. doi: 10.1158/1055-9965.EPI-17-0315. Epub 2017 Jun 14. Cancer Epidemiol Biomarkers Prev. 2018. PMID: 28615364 Review.
  • A compendium of genome-wide associations for cancer: critical synopsis and reappraisal.
    Ioannidis JP, Castaldi P, Evangelou E. Ioannidis JP, et al. J Natl Cancer Inst. 2010 Jun 16;102(12):846-58. doi: 10.1093/jnci/djq173. Epub 2010 May 26. J Natl Cancer Inst. 2010. PMID: 20505153 Free PMC article. Review.

Cited by

References

    1. Henderson BE, Feigelson HS. Hormonal carcinogenesis. Carcinogenesis. 2000;21:427–33. - PubMed
    1. U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2012 Incidence and Mortality Web-based Report. [Internet] Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute; 2015. [cited 2015 Sep 22]. Available from: www.cdc.gov/uscs.
    1. Sellers TA, Potter JD, Rich SS, Drinkard CR, Bostick RM, Kushi LH, et al. Familial clustering of breast and prostate cancers and risk of postmenopausal breast cancer. J Natl Cancer Inst. 1994;86:1860–5. - PubMed
    1. Tung K-H, Goodman MT, Wu AH, McDuffie K, Wilkens LR, Nomura AMY, et al. Aggregation of ovarian cancer with breast, ovarian, colorectal, and prostate cancer in first-degree relatives. Am J Epidemiol. 2004;159:750–8. - PubMed
    1. Cerhan JR, Parker AS, Putnam SD, Chiu BC, Lynch CF, Cohen MB, et al. Family history and prostate cancer risk in a population-based cohort of Iowa men. Cancer Epidemiol Biomarkers Prev. 1999;8:53–60. - PubMed

Publication types

MeSH terms

Grants and funding