Structural and Immunological Characterization of Recombinant 6-Cysteine Domains of the Plasmodium falciparum Sexual Stage Protein Pfs230
- PMID: 27432885
- PMCID: PMC5025679
- DOI: 10.1074/jbc.M116.732305
Structural and Immunological Characterization of Recombinant 6-Cysteine Domains of the Plasmodium falciparum Sexual Stage Protein Pfs230
Abstract
Development of a Plasmodium falciparum (Pf) transmission blocking vaccine (TBV) has the potential to significantly impact malaria control. Antibodies elicited against sexual stage proteins in the human bloodstream are taken up with the blood meal of the mosquitoes and inactivate parasite development in the mosquito. In a phase 1 trial, a leading TBV identified as Pfs25-EPA/Alhydrogel® appeared safe and immunogenic, however, the level of Pfs25-specific antibodies were likely too low for an effective vaccine. Pfs230, a 230-kDa sexual stage protein expressed in gametocytes is an alternative vaccine candidate. A unique 6-cysteine-rich domain structure within Pfs230 have thwarted its recombinant expression and characterization for clinical evaluation for nearly a quarter of a century. Here, we report on the identification, biochemical, biophysical, and immunological characterization of recombinant Pfs230 domains. Rabbit antibodies generated against recombinant Pfs230 domains blocked mosquito transmission of a laboratory strain and two field isolates using an ex vivo assay. A planned clinical trial of the Pfs230 vaccine is a significant step toward the potential development of a transmission blocking vaccine to eliminate malaria.
Keywords: Pfs230; Pichia pastoris; malaria; protein structure; recombinant protein expression; transmission blocking; vaccine; yeast.
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Figures




Similar articles
-
Identification of domains within Pfs230 that elicit transmission blocking antibody responses.Vaccine. 2019 Mar 22;37(13):1799-1806. doi: 10.1016/j.vaccine.2019.02.021. Epub 2019 Feb 26. Vaccine. 2019. PMID: 30824357 Free PMC article.
-
Stage-specific processing of Pfs230, a Plasmodium falciparum transmission-blocking vaccine candidate.Mol Biochem Parasitol. 1996 Jun;78(1-2):161-9. doi: 10.1016/s0166-6851(96)02621-7. Mol Biochem Parasitol. 1996. PMID: 8813686
-
Pfs230: from malaria transmission-blocking vaccine candidate toward function.Parasite Immunol. 2003 Jul;25(7):351-9. doi: 10.1046/j.1365-3024.2003.00643.x. Parasite Immunol. 2003. PMID: 14521577 Review. No abstract available.
-
Nasal immunization with a malaria transmission-blocking vaccine candidate, Pfs25, induces complete protective immunity in mice against field isolates of Plasmodium falciparum.Infect Immun. 2005 Nov;73(11):7375-80. doi: 10.1128/IAI.73.11.7375-7380.2005. Infect Immun. 2005. PMID: 16239536 Free PMC article.
-
Structural vaccinology of malaria transmission-blocking vaccines.Expert Rev Vaccines. 2021 Feb;20(2):199-214. doi: 10.1080/14760584.2021.1873135. Epub 2021 Jan 19. Expert Rev Vaccines. 2021. PMID: 33430656 Free PMC article. Review.
Cited by
-
Display of malaria transmission-blocking antigens on chimeric duck hepatitis B virus-derived virus-like particles produced in Hansenula polymorpha.PLoS One. 2019 Sep 4;14(9):e0221394. doi: 10.1371/journal.pone.0221394. eCollection 2019. PLoS One. 2019. PMID: 31483818 Free PMC article.
-
Chronic helminth infection does not impair immune response to malaria transmission blocking vaccine Pfs230D1-EPA/Alhydrogel® in mice.Vaccine. 2019 Feb 14;37(8):1038-1045. doi: 10.1016/j.vaccine.2019.01.027. Epub 2019 Jan 23. Vaccine. 2019. PMID: 30685251 Free PMC article.
-
Developing transmission-blocking strategies for malaria control.PLoS Pathog. 2017 Jul 6;13(7):e1006336. doi: 10.1371/journal.ppat.1006336. eCollection 2017 Jul. PLoS Pathog. 2017. PMID: 28683121 Free PMC article. Review. No abstract available.
-
Rare Alleles and Signatures of Selection on the Immunodominant Domains of Pfs230 and Pfs48/45 in Malaria Parasites From Western Kenya.Front Genet. 2022 May 17;13:867906. doi: 10.3389/fgene.2022.867906. eCollection 2022. Front Genet. 2022. PMID: 35656326 Free PMC article.
-
Extending the range of Plasmodium falciparum transmission blocking antibodies.Vaccine. 2023 May 16;41(21):3367-3379. doi: 10.1016/j.vaccine.2023.04.042. Epub 2023 Apr 24. Vaccine. 2023. PMID: 37100721 Free PMC article.
References
-
- Agnandji S. T., Lell B., Soulanoudjingar S. S., Fernandes J. F., Abossolo B. P., Conzelmann C., Methogo B. G., Doucka Y., Flamen A., Mordmuller B., Issifou S., Kremsner P. G., Sacarlal J., Aide P., Lanaspa M., et al. (2011) First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children. N. Engl. J. Med. 365, 1863–1875 - PubMed
-
- Wu Y., Ellis R. D., Shaffer D., Fontes E., Malkin E. M., Mahanty S., Fay M. P., Narum D., Rausch K., Miles A. P., Aebig J., Orcutt A., Muratova O., Song G., Lambert L., et al. (2008) Phase 1 trial of malaria transmission blocking vaccine candidates Pfs25 and Pvs25 formulated with montanide ISA 51. PLoS ONE 3, e2636. - PMC - PubMed
-
- Wu Y., Przysiecki C., Flanagan E., Bello-Irizarry S. N., Ionescu R., Muratova O., Dobrescu G., Lambert L., Keister D., Rippeon Y., Long C. A., Shi L., Caulfield M., Shaw A., Saul A., Shiver J., and Miller L. H. (2006) Sustained high-titer antibody responses induced by conjugating a malarial vaccine candidate to outer-membrane protein complex. Proc. Natl. Acad. Sci. U.S.A. 103, 18243–18248 - PMC - PubMed
-
- Qian F., Wu Y., Muratova O., Zhou H., Dobrescu G., Duggan P., Lynn L., Song G., Zhang Y., Reiter K., MacDonald N., Narum D. L., Long C. A., Miller L. H., Saul A., and Mullen G. E. (2007) Conjugating recombinant proteins to Pseudomonas aeruginosa ExoProtein A: a strategy for enhancing immunogenicity of malaria vaccine candidates. Vaccine 25, 3923–3933 - PMC - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials