PETModule: a motif module based approach for enhancer target gene prediction
- PMID: 27436110
- PMCID: PMC4951774
- DOI: 10.1038/srep30043
PETModule: a motif module based approach for enhancer target gene prediction
Abstract
The identification of enhancer-target gene (ETG) pairs is vital for the understanding of gene transcriptional regulation. Experimental approaches such as Hi-C have generated valuable resources of ETG pairs. Several computational methods have also been developed to successfully predict ETG interactions. Despite these progresses, high-throughput experimental approaches are still costly and existing computational approaches are still suboptimal and not easy to apply. Here we developed a motif module based approach called PETModule that predicts ETG pairs. Tested on eight human cell types and two mouse cell types, we showed that a large number of our predictions were supported by Hi-C and/or ChIA-PET experiments. Compared with two recently developed approaches for ETG pair prediction, we shown that PETModule had a much better recall, a similar or better F1 score, and a larger area under the receiver operating characteristic curve. The PETModule tool is freely available at http://hulab.ucf.edu/research/projects/PETModule/.
Figures
Similar articles
-
EPIP: a novel approach for condition-specific enhancer-promoter interaction prediction.Bioinformatics. 2019 Oct 15;35(20):3877-3883. doi: 10.1093/bioinformatics/btz641. Bioinformatics. 2019. PMID: 31410461 Free PMC article.
-
TarPmiR: a new approach for microRNA target site prediction.Bioinformatics. 2016 Sep 15;32(18):2768-75. doi: 10.1093/bioinformatics/btw318. Epub 2016 May 20. Bioinformatics. 2016. PMID: 27207945 Free PMC article.
-
Systematic discovery of cofactor motifs from ChIP-seq data by SIOMICS.Methods. 2015 Jun;79-80:47-51. doi: 10.1016/j.ymeth.2014.08.006. Epub 2014 Aug 27. Methods. 2015. PMID: 25171961
-
Bioinformatics approaches to predict target genes from transcription factor binding data.Methods. 2017 Dec 1;131:111-119. doi: 10.1016/j.ymeth.2017.09.001. Epub 2017 Sep 7. Methods. 2017. PMID: 28890129 Review.
-
[Computational predictions of transcription factor binding sites].Tanpakushitsu Kakusan Koso. 2004 Dec;49(17 Suppl):2877-81. Tanpakushitsu Kakusan Koso. 2004. PMID: 15669270 Review. Japanese. No abstract available.
Cited by
-
A systematic study of HIF1A cofactors in hypoxic cancer cells.Sci Rep. 2022 Nov 8;12(1):18962. doi: 10.1038/s41598-022-23060-9. Sci Rep. 2022. PMID: 36347941 Free PMC article.
-
Prediction of target genes and functional types of cis-regulatory modules in the human genome reveals their distinct properties.BMC Biol. 2025 Jul 15;23(1):211. doi: 10.1186/s12915-025-02313-9. BMC Biol. 2025. PMID: 40660252 Free PMC article.
-
A systematic evaluation of the computational tools for ligand-receptor-based cell-cell interaction inference.Brief Funct Genomics. 2022 Sep 16;21(5):339-356. doi: 10.1093/bfgp/elac019. Brief Funct Genomics. 2022. PMID: 35822343 Free PMC article.
-
Interpretation of deep learning in genomics and epigenomics.Brief Bioinform. 2021 May 20;22(3):bbaa177. doi: 10.1093/bib/bbaa177. Brief Bioinform. 2021. PMID: 34020542 Free PMC article. Review.
-
EPIP: a novel approach for condition-specific enhancer-promoter interaction prediction.Bioinformatics. 2019 Oct 15;35(20):3877-3883. doi: 10.1093/bioinformatics/btz641. Bioinformatics. 2019. PMID: 31410461 Free PMC article.
References
-
- Blackwood E. M. & Kadonaga J. T. Going the distance: a current view of enhancer action. Science 281, 60–63 (1998). - PubMed
-
- Maston G. A., Evans S. K. & Green M. R. Transcriptional regulatory elements in the human genome. Annu. Rev. Genomics Hum. Genet. 7, 29–59 (2006). - PubMed
-
- Latchman D. S. Transcription factors: an overview. The international journal of biochemistry & cell biology 29, 1305–1312 (1997). - PubMed
-
- Lenhard B. & Wasserman W. W. TFBS: Computational framework for transcription factor binding site analysis. Bioinformatics 18, 1135–1136 (2002). - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources