Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 May 9;7(7):702-7.
doi: 10.1021/acsmedchemlett.6b00135. eCollection 2016 Jul 14.

Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group

Affiliations

Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group

Christopher J Bungard et al. ACS Med Chem Lett. .

Abstract

A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile.

Keywords: HIV; MK-8718; inhibitor; protease.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Pyrrolidine based inhibitor 1 and proposed morpholine based inhibitor 2.
Scheme 1
Scheme 1
Reagents and conditions: (a) (i) Ph3P=CHCHO, THF, 50 °C; (ii) Pd/C, 30 psi H2, EtOAc, RT; (b) BnNH2, NaBH4, THF/MeOH, RT; (ii) Pd/C, 50 psi H2, MeOH, RT; (c) NaHCO3, THF/H2O, 0 °C; (d) TFA, Et3SiH, CH2Cl2, RT.
Figure 2
Figure 2
Overlay of the enzyme bound conformations of 2 (green) and 8 (magenta). The flaps have been cut away for optimum viewing. The 5-position is marked with an *.
Scheme 2
Scheme 2
Reagents and conditions: (a) (R)-epichlorohydrin, LiClO4, NaOMe, toluene/MeOH, RT; (b) (i) Pd(OH)2, Boc2O, NEt3, 45 psi H2, RT; (ii) oxalyl chloride, NEt3, DMSO, CH2Cl2, −78 °C; (c) (i) K2CO3, 18-crown-6, (2-nitrobenzyl)triphenylphosphonium bromide, DME, RT; (ii) Pd/C, 50 psi H2, EtOH, RT; (d) (S)-2-((methoxycarbonyl)amino)-3,3-diphenylpropanoic acid, HATU, 2,6-lutidine, DMF, RT; (e) TBAF, THF, RT; (f) (i) benzylisocyanate, DCM, RT; (ii) TFA, DCM, 0 °C.
Scheme 3
Scheme 3
Reagents and conditions: (a) K2CO3, 18-crown-6, (2-fluoro-6-nitrobenzyl)triphenylphosphonium bromide, DME, RT; (b) HCl, MeOH, RT; (c) (i) 2,2,2-trifluoroethylamine, CDI, pyridine, RT; (ii) Pd(OH)2, 50 psi H2, CF3CH2OH, RT.
Scheme 4
Scheme 4
Reagents and conditions: (a) dimethyl (1-diazo-2-oxopropyl)phosphonate, K2CO3, MeOH, RT; (b) (i) 5-fluoro-4-iodopyridin-3-amine, 7% (PPh3)2PdCl2, 10% CuI, Et3N, CH3CN, 70 °C; (ii) 50% PtO2, 50 psi H2, CF3CF2OH, RT; (c) (i) Cbz-Cl, pyridine, 0 °C; (ii) TBAF, THF, RT; (d) (i) 2,2,2-trifluoroethylamine, CDI, pyridine, 60 °C; (ii) Pd/C, 1 atm H2, EtOH, RT.
Scheme 5
Scheme 5
Reagents and conditions: (a) nBuLi, (S)-4-phenyloxazolidin-2-one, THF, −78 °C; (b) (3-Fluorophenyl)magnesium bromide, CuBr.SMe2, THF, −20 °C; (c) NaHMDS, trisyl azide, THF, −78 °C; (d) H2O2, LiOH, NaHCO3, THF/H2O, 0 °C.
Scheme 6
Scheme 6
Reagents and conditions: (a) nBuLi, (R)-4-phenyloxazolidin-2-one, THF, −78 °C; (b) (4-fluoro or chlorophenyl)magnesium bromide, CuBr·SMe2, THF, −20 °C; (c) H2O2, LiOH, NaHCO3, THF/H2O, 0 °C; (d) SOCl2, CH2Cl2, reflux; (d) nBuLi, (S)-4-phenyloxazolidin-2-one, THF, −78 °C; (d) NaHMDS, trisyl azide, THF, −78 °C; (d) H2O2, LiOH, NaHCO3, THF/H2O, 0 °C.
Scheme 7
Scheme 7
Reagents and conditions: (a) (i) (S)-2-((methoxycarbonyl)amino)-3,3-diphenylpropa-noic acid or (S)-2-((tert-butoxycarbonyl)amino)-3,3-diphenylpropanoic acid, POCl3, pyridine, 0 °C; (ii) 4 M HCl, dioxane, RT; (b) (i) 30, 39, or 40, POCl3, pyridine, 0 °C; (ii) Pd/C, 1 atm H2, MeOH, RT, or PPh3, THF/H2O, reflux; (iii) 4 M HCl, dioxane, RT.

References

    1. Erickson-Viitanen S.; Manfredi J.; Viitanen P.; Tribe D. E.; Tritch R.; Hutchison C. A. 3rd; Loeb D. D.; Swanstrom R. Cleavage of HIV-1 gag polyprotein synthesized in vitro: sequential cleavage by the viral protease. AIDS Res. Hum. Retroviruses 1989, 5 (6), 577–91. 10.1089/aid.1989.5.577. - DOI - PubMed
    1. Kohl N. E.; Emini E. A.; Schleif W. A.; Davis L. J.; Heimbach J. C.; Dixon R. A. F.; Scolnick E. M.; Sigal I. S. Active human immunodeficiency virus protease is required for viral infectivity. Proc. Natl. Acad. Sci. U. S. A. 1988, 85 (13), 4686–90. 10.1073/pnas.85.13.4686. - DOI - PMC - PubMed
    1. Wensing A. M. J.; van Maarseveen N. M.; Nijhuis M. Fifteen years of HIV Protease Inhibitors: raising the barrier to resistance. Antiviral Res. 2010, 85 (1), 59–74. 10.1016/j.antiviral.2009.10.003. - DOI - PubMed
    1. Ghosh A. K.; Osswald H. L.; Prato G. Recent Progress in the Development of HIV-1 Protease Inhibitors for the Treatment of HIV/AIDS. J. Med. Chem. 2016, 10.1021/acs.jmedchem.5b01697. - DOI - PMC - PubMed
    1. Wensing A. M.; Calvez V.; Gunthard H. F.; Johnson V. A.; Paredes R.; Pillay D.; Shafer R. W.; Richman D. D. 2014 Update of the drug resistance mutations in HIV-1. Top Antivir Med. 2014, 22 (3), 642–50. - PMC - PubMed

LinkOut - more resources