Role of Conserved Gly-Gly Pairs on the Periplasmic Side of LacY
- PMID: 27438891
- PMCID: PMC5456280
- DOI: 10.1021/acs.biochem.6b00666
Role of Conserved Gly-Gly Pairs on the Periplasmic Side of LacY
Abstract
On the periplasmic side of LacY, two conserved Gly-Gly pairs in helices II and XI (Gly46 and Gly370, respectively) and helices V and VIII (Gly159 and Gly262, respectively) allow close packing of each helix pair in the outward (periplasmic)-closed conformation. Previous studies demonstrate that replacing one Gly residue in each Gly-Gly pair with Trp leads to opening of the periplasmic cavity with abrogation of transport activity, but an increased rate of galactoside binding. To further investigate the role of the Gly-Gly pairs, 11 double-replacement mutants were constructed for each pair at positions 46 (helix II) and 262 (helix VIII). Replacement with Ala or Ser results in decreased but significant transport activity, while replacements with Thr, Val, Leu, Asn, Gln, Tyr, Trp, Glu, or Lys exhibit very little or no transport. Remarkably, however, the double mutants bind galactoside with affinities 10-20-fold higher than that of the pseudo-WT or WT LacY. Moreover, site-directed alkylation of a periplasmic Cys replacement indicates that the periplasmic cavity becomes readily accessible in the double-replacement mutants. Molecular dynamics simulations with the WT and double-Leu mutant in the inward-open/outward-closed conformation provide support for this interpretation.
Conflict of interest statement
The authors declare no competing financial interest.
Figures
References
-
- Saier MH, Jr, Beatty JT, Goffeau A, Harley KT, Heijne WH, Huang SC, Jack DL, Jahn PS, Lew K, Liu J, Pao SS, Paulsen IT, Tseng TT, Virk PS. The major facilitator superfamily. J Mol Microbiol Biotechnol. 1999;1:257–279. - PubMed
-
- Saier MH., Jr Families of transmembrane sugar transport proteins. Mol Microbiol. 2000;35:699–710. - PubMed
-
- Kaback HR, Sahin-Toth M, Weinglass AB. The kamikaze approach to membrane transport. Nat Rev Mol Cell Biol. 2001;2:610–620. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
