Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Dec;13(6):651-659.
doi: 10.1177/1740774516659472. Epub 2016 Jul 19.

Non-factorial analyses of two-by-two factorial trial designs

Affiliations

Non-factorial analyses of two-by-two factorial trial designs

Edward L Korn et al. Clin Trials. 2016 Dec.

Abstract

Background/aims: Factorial analyses of 2 × 2 trial designs are known to be problematic unless one can be sure that there is no interaction between the treatments (A and B). Instead, we consider non-factorial analyses of a factorial trial design that addresses clinically relevant questions of interest without any assumptions on the interaction. Primary questions of interest are as follows: (1) is A better than the control treatment C, (2) is B better than C, (3) is the combination of A and B (AB) better than C, and (4) is AB better than A, B, and C.

Methods: A simple three-step procedure that tests the first three primary questions of interest using a Bonferroni adjustment at the first step is proposed. A Hochberg procedure on the four primary questions is also considered. The two procedures are evaluated and compared in limited simulations. Published results from three completed trials with factorial designs are re-evaluated using the two procedures.

Results: Both suggested procedures (that answer multiple questions) require a 50%-60% increase in per arm sample size over a two-arm design asking a single question. The simulations suggest a slight advantage to the three-step procedure in terms of power (for the primary and secondary questions). The proposed procedures would have formally addressed the questions arising in the highlighted published trials arguably more simply than the pre-specified factorial analyses used.

Conclusion: Factorial trial designs are an efficient way to evaluate two treatments, alone and in combination. In situations where a statistical interaction between the treatment effects cannot be assumed to be 0, simple non-factorial analyses are possible that directly assess the questions of interest without the zero interaction assumption.

Keywords: 2 × 2 trial design; Factorial design; Hochberg procedure; factorial analysis; interaction; multiple comparisons.

PubMed Disclaimer

LinkOut - more resources