A Framework for Considering Comprehensibility in Modeling
- PMID: 27441712
- PMCID: PMC4932655
- DOI: 10.1089/big.2016.0007
A Framework for Considering Comprehensibility in Modeling
Abstract
Comprehensibility in modeling is the ability of stakeholders to understand relevant aspects of the modeling process. In this article, we provide a framework to help guide exploration of the space of comprehensibility challenges. We consider facets organized around key questions: Who is comprehending? Why are they trying to comprehend? Where in the process are they trying to comprehend? How can we help them comprehend? How do we measure their comprehension? With each facet we consider the broad range of options. We discuss why taking a broad view of comprehensibility in modeling is useful in identifying challenges and opportunities for solutions.
Keywords: data analysis; human-computer interaction; machine learning; statistical modeling; visual analytics; visualization.
Figures



Similar articles
-
Progressive Visual Analytics: User-Driven Visual Exploration of In-Progress Analytics.IEEE Trans Vis Comput Graph. 2014 Dec;20(12):1653-62. doi: 10.1109/TVCG.2014.2346574. IEEE Trans Vis Comput Graph. 2014. PMID: 26356879
-
Benefitting InfoVis with visual difficulties.IEEE Trans Vis Comput Graph. 2011 Dec;17(12):2213-22. doi: 10.1109/TVCG.2011.175. IEEE Trans Vis Comput Graph. 2011. PMID: 22034340
-
The User Puzzle—Explaining the Interaction with Visual Analytics Systems.IEEE Trans Vis Comput Graph. 2012 Dec;18(12):2908-16. doi: 10.1109/TVCG.2012.273. IEEE Trans Vis Comput Graph. 2012. PMID: 26357200
-
Visualization and visual analysis of multifaceted scientific data: a survey.IEEE Trans Vis Comput Graph. 2013 Mar;19(3):495-513. doi: 10.1109/TVCG.2012.110. IEEE Trans Vis Comput Graph. 2013. PMID: 22508905 Review.
-
Cognitive Factors in Process Model Comprehension-A Systematic Literature Review.Brain Sci. 2025 May 15;15(5):505. doi: 10.3390/brainsci15050505. Brain Sci. 2025. PMID: 40426676 Free PMC article. Review.
Cited by
-
Teaching Responsible Data Science: Charting New Pedagogical Territory.Int J Artif Intell Educ. 2022;32(3):783-807. doi: 10.1007/s40593-021-00241-7. Epub 2021 Apr 15. Int J Artif Intell Educ. 2022. PMID: 33880114 Free PMC article.
-
Interpretability of Machine Learning Solutions in Public Healthcare: The CRISP-ML Approach.Front Big Data. 2021 May 26;4:660206. doi: 10.3389/fdata.2021.660206. eCollection 2021. Front Big Data. 2021. PMID: 34124652 Free PMC article.
References
-
- Schulz H-J, Nocke T, Heitzler M, Schumann H. A design space of visualization tasks. IEEE Trans Vis Comput Graphics. 2013;19:2366–2375 - PubMed
-
- Huysmans J, Baesens B, Vanthienen J. Using rule extraction to improve the comprehensibility of predictive models. SSRN 2006. Available at: http://dx.doi.org/10.2139/ssrn.961358
-
- Zeiler M, Fergus R. Visualizing and understanding convolutional networks. In Fleet D, Pajdla T, Schiele B, Tuytelaars T. (Eds.): ECCV 2014, Volume 8689 of Lecture Notes in Computer Science, Cham: Springer International Publishing, 2014. pp. 818–833
-
- Munzner T. Visualization Analysis and Design. Boca Raton, FL, CRC Press, 2014
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources