Machine Learning Techniques for the Detection of Shockable Rhythms in Automated External Defibrillators
- PMID: 27441719
- PMCID: PMC4956226
- DOI: 10.1371/journal.pone.0159654
Machine Learning Techniques for the Detection of Shockable Rhythms in Automated External Defibrillators
Abstract
Early recognition of ventricular fibrillation (VF) and electrical therapy are key for the survival of out-of-hospital cardiac arrest (OHCA) patients treated with automated external defibrillators (AED). AED algorithms for VF-detection are customarily assessed using Holter recordings from public electrocardiogram (ECG) databases, which may be different from the ECG seen during OHCA events. This study evaluates VF-detection using data from both OHCA patients and public Holter recordings. ECG-segments of 4-s and 8-s duration were analyzed. For each segment 30 features were computed and fed to state of the art machine learning (ML) algorithms. ML-algorithms with built-in feature selection capabilities were used to determine the optimal feature subsets for both databases. Patient-wise bootstrap techniques were used to evaluate algorithm performance in terms of sensitivity (Se), specificity (Sp) and balanced error rate (BER). Performance was significantly better for public data with a mean Se of 96.6%, Sp of 98.8% and BER 2.2% compared to a mean Se of 94.7%, Sp of 96.5% and BER 4.4% for OHCA data. OHCA data required two times more features than the data from public databases for an accurate detection (6 vs 3). No significant differences in performance were found for different segment lengths, the BER differences were below 0.5-points in all cases. Our results show that VF-detection is more challenging for OHCA data than for data from public databases, and that accurate VF-detection is possible with segments as short as 4-s.
Conflict of interest statement
Figures
References
-
- Kerber RE, Becker LB, Bourland JD, Cummins RO, Hallstrom AP, Michos MB, et al. Automatic External Defibrillators for Public Access Defibrillation: Recommendations for Specifying and Reporting Arrhythmia Analysis Algorithm Performance, Incorporating New Waveforms, and Enhancing Safety A Statement for Health Professionals From the American Heart Association Task Force on Automatic External Defibrillation, Subcommittee on AED Safety and Efficacy. Circulation. 1997;95(6):1677–1682. - PubMed
-
- Kuo S, Dillman R. Computer detection of ventricular fibrillation In: Computers in Cardiology; 1978. p. 2747–2750.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
