Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 May;73(5):936-944.
doi: 10.1002/ps.4368. Epub 2016 Sep 7.

Forward selection for multiple resistance across the non-selective glyphosate, glufosinate and oxyfluorfen herbicides in Lolium weed species

Affiliations

Forward selection for multiple resistance across the non-selective glyphosate, glufosinate and oxyfluorfen herbicides in Lolium weed species

Pablo Fernández et al. Pest Manag Sci. 2017 May.

Abstract

Background: In the Mediterranean area, Lolium species have evolved resistance to glyphosate after decades of continual use without other alternative chemicals in perennial crops (olive, citrus and vineyards). In recent years, oxyfluorfen alone or mixed with glyphosate and glufosinate has been introduced as a chemical option to control dicot and grass weeds.

Results: Dose-response studies confirmed that three glyphosate-resistant Lolium weed species (L. rigidum, L. perenne, L. multiflorum) collected from perennial crops in the Iberian Peninsula have also evolved resistance to glufosinate and oxyfluorfen herbicides, despite their recent introduction. Based on the LD50 resistance parameter, the resistance factor was similar among Lolium species and ranged from 14- to 21-fold and from ten- to 12-fold for oxyfluorfen and glufosinate respectively. Similarly, about 14-fold resistance to both oxyfluorfen and glufosinate was estimated on average for the three Lolium species when growth reduction (GR50 ) was assessed. This study identified oxyfluorfen resistance in a grass species for the first time.

Conclusion: A major threat to sustainability of perennial crops in the Iberian Peninsula is evident, as multiple resistance to non-selective glyphosate, glufosinate and oxyfluorfen herbicides has evolved in L. rigidum, L. perenne and L. multiflorum weeds. © 2016 Society of Chemical Industry.

Keywords: Lolium multiflorum; Lolium perenne; Lolium rigidum; herbicide resistance evolution; olive groves.

PubMed Disclaimer

LinkOut - more resources