Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jul:27:30-8.
doi: 10.1016/j.drup.2016.06.001. Epub 2016 Jun 6.

Cryptic prophages as targets for drug development

Affiliations
Free article
Review

Cryptic prophages as targets for drug development

Xiaoxue Wang et al. Drug Resist Updat. 2016 Jul.
Free article

Abstract

Bacterial chromosomes may contain up to 20% phage DNA that encodes diverse proteins ranging from those for photosynthesis to those for autoimmunity; hence, phages contribute greatly to the metabolic potential of pathogens. Active prophages carrying genes encoding virulence factors and antibiotic resistance can be excised from the host chromosome to form active phages and are transmissible among different bacterial hosts upon SOS responses. Cryptic prophages are artifacts of mutagenesis in which lysogenic phage are captured in the bacterial chromosome: they may excise but they do not form active phage particles or lyse their captors. Hence, cryptic prophages are relatively permanent reservoirs of genes, many of which benefit pathogens, in ways we are just beginning to discern. Here we explore the role of active prophage- and cryptic prophage-derived proteins in terms of (i) virulence, (ii) antibiotic resistance, and (iii) antibiotic tolerance; antibiotic tolerance occurs as a result of the non-heritable phenotype of dormancy which is a result of activation of toxins of toxin/antitoxin loci that are frequently encoded in cryptic prophages. Therefore, cryptic prophages are promising targets for drug development.

Keywords: Antibiotic resistance; Antibiotic tolerance; Cryptic prophage; Horizontal gene transfer; Toxin–antitoxin system.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources