Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Aug 28;374(2075):20160093.
doi: 10.1098/rsta.2016.0093.

Maxwell electromagnetism as an emergent phenomenon in condensed matter

Affiliations
Review

Maxwell electromagnetism as an emergent phenomenon in condensed matter

J Rehn et al. Philos Trans A Math Phys Eng Sci. .

Abstract

The formulation of a complete theory of classical electromagnetism by Maxwell is one of the milestones of science. The capacity of many-body systems to provide emergent mini-universes with vacua quite distinct from the one we inhabit was only recognized much later. Here, we provide an account of how simple systems of localized spins manage to emulate Maxwell electromagnetism in their low-energy behaviour. They are much less constrained by symmetry considerations than the relativistically invariant electromagnetic vacuum, as their substrate provides a non-relativistic background with even translational invariance broken. They can exhibit rich behaviour not encountered in conventional electromagnetism. This includes the existence of magnetic monopole excitations arising from fractionalization of magnetic dipoles; as well as the capacity of disorder, by generating defects on the lattice scale, to produce novel physics, as exemplified by topological spin glassiness or random Coulomb magnetism.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'.

Keywords: frustrated magnets; spin glass; spin ice.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources