Non-specific binding and steric hindrance thresholds for penetration of particulate drug carriers within tumor tissue
- PMID: 27460683
- PMCID: PMC5499233
- DOI: 10.1016/j.jconrel.2016.07.034
Non-specific binding and steric hindrance thresholds for penetration of particulate drug carriers within tumor tissue
Abstract
Therapeutic nanoparticles (NPs) approved for clinical use in solid tumor therapy provide only modest improvements in patient survival, in part due to physiological barriers that limit delivery of the particles throughout the entire tumor. Here, we explore the thresholds for NP size and surface poly(ethylene glycol) (PEG) density for penetration within tumor tissue extracellular matrix (ECM). We found that NPs as large as 62nm, but less than 110nm in diameter, diffused rapidly within a tumor ECM preparation (Matrigel) and breast tumor xenograft slices ex vivo. Studies of PEG-density revealed that increasing PEG density enhanced NP diffusion and that PEG density below a critical value led to adhesion of NP to ECM. Non-specific binding of NPs to tumor ECM components was assessed by surface plasmon resonance (SPR), which revealed excellent correlation with the particle diffusion results. Intravital microscopy of NP spread in breast tumor tissue confirmed a significant difference in tumor tissue penetration between the 62 and 110nm PEG-coated NPs, as well as between PEG-coated and uncoated NPs. SPR assays also revealed that Abraxane, an FDA-approved non-PEGylated NP formulation used for cancer therapy, binds to tumor ECM. Our results establish limitations on the size and surface PEG density parameters required to achieve uniform and broad dispersion within tumor tissue and highlight the utility of SPR as a high throughput method to screen NPs for tumor penetration.
Keywords: Intravital microscopy; Multiple particle tracking (MPT); Nanoparticles; PEG density; Surface plasmon resonance (SPR); Tumor tissue penetration.
Copyright © 2016 Elsevier B.V. All rights reserved.
Figures







References
-
- Barenholz Y. Doxil®--the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160:117–134. - PubMed
-
- O’Brien ME, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, Catane R, Kieback DG, Tomczak P, Ackland SP, Orlandi F, Mellars L, Alland L, Tendler C, Group CBCS. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol. 2004;15:440–449. - PubMed
-
- Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, Hawkins M, O’Shaughnessy J. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol. 2005;23:7794–7803. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous