Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Aug;53(2):622-31.
doi: 10.1111/j.1471-4159.1989.tb07379.x.

Partial isolation of two classes of dopamine beta-hydroxylase-containing particles undergoing rapid axonal transport in rat sciatic nerve

Affiliations

Partial isolation of two classes of dopamine beta-hydroxylase-containing particles undergoing rapid axonal transport in rat sciatic nerve

D R Studelska et al. J Neurochem. 1989 Aug.

Abstract

The rapid bidirectional transport of dopamine beta-hydroxylase (DBH) in adrenergic axons provides a means of analyzing the life cycle of adrenergic storage vesicles. We compared the physical characteristics of DBH-containing particles traveling to or returning from the terminal varicosities of ligated rat sciatic nerves. Density gradient centrifugation and Sephacryl S1000 gel-permeation chromatography were used to fractionate extracts from nerve segments proximal or distal to the ligatures. A series of experiments indicated the existence of at least two populations of rapidly transported DBH-containing particles, a "light" 85-nm particle and a larger "dense" 120-nm particle. The 85-nm particles were prevalent in unligated nerve, but accounted for only one-third of the total anterogradely transported DBH activity accumulated after 18 h. The 120-nm particles were barely detectable in the unligated nerve, but they accumulated at twice the rate of the 85-nm particles and accounted for the rest of the anterogradely transported particulate DBH activity. These two populations of particles were readily isolated from proximal nerve extracts by sucrose density gradient centrifugation. Similar-appearing dense and light peaks of particulate DBH activity were obtained from distal nerve extracts. Much of the retrogradely transported DBH of the extracts, however, was associated with large particles (greater than 300 nm) not resolved by Sephacryl S1000. Retrogradely transported exogenous NGF was found only in the dense sucrose gradient peak. We propose that the 85-nm DBH-containing particles correspond to "large dense-cored vesicles," and that the 120-nm particles are derived from the dense tubules visualized in adrenergic nerves by the chromaffin reaction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources