Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2017 Sep;31(9):2590-2598.
doi: 10.1519/JSC.0000000000001569.

A Novel Mass-Spring-Damper Model Analysis to Identify Landing Deficits in Athletes Returning to Sport After Anterior Cruciate Ligament Reconstruction

Affiliations
Clinical Trial

A Novel Mass-Spring-Damper Model Analysis to Identify Landing Deficits in Athletes Returning to Sport After Anterior Cruciate Ligament Reconstruction

Daniel K Schneider et al. J Strength Cond Res. 2017 Sep.

Abstract

Schneider, DK, Gokeler, A, Otten, E, Ford, KR, Hewett, TE, Divine, JG, Colosimo, AJ, Heidt, RS, and Myer, GD. A Novel mass-spring-damper model analysis to identify landing deficits in athletes returning to sport after anterior cruciate ligament reconstruction. J Strength Cond Res 31(9): 2590-2598, 2017-A mass-spring-damper (MSD) model may serve as an extension of biomechanical data from 3-dimensional motion analysis and epidemiological data which helps to delineate populations at risk for anterior cruciate ligament (ACL) injuries. The purpose of this study was to evaluate such a model. Thirty-six ACL reconstruction (ACLR) group subjects and 67 controls (CTRL) completed single-leg drop landing and single-leg broad jump tasks. Landing ground reaction force data were collected and analyzed with an MSD model. Medians, interquartile ranges, and limb symmetry indices (LSIs) were calculated and comparisons were made within and between groups. During a single-leg drop landing, the ACLR group had a lower spring LSI than the CTRL group (p = 0.015) and landed with decreased stiffness in the involved limb relative to the uninvolved limb (p = 0.021). The ACLR group also had an increased damping LSI relative to the CTRL group (p = 0.045). The ACLR subjects landed with increased stiffness (p = 0.006) and decreased damping (p = 0.003) in their involved limbs compared to CTRL subjects' nondominant limbs. During a single-leg forward broad jump, the ACLR group had a greater spring LSI value than the CTRL group (p = 0.045). The CTRL group also recorded decreased damping values in their nondominant limbs compared with the involved limbs of the ACLR group (p = 0.046). Athletes who have undergone ACLR display different lower-limb dynamics than healthy controls, according to an MSD model. Quadriceps dominance and leg dominance are components of ACLR athletes' landing strategies and may be identified with an MSD model and addressed during rehabilitation.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Sports currently played by subjects, expressed as the percentage of each group, CTRL or ACLR, which participated in a particular sport.

Similar articles

Cited by

References

    1. Ahldén M, Samuelsson K, Sernert N, Forssblad M, Karlsson J, Kartus J. The Swedish National Anterior Cruciate Ligament Register A Report on Baseline Variables and Outcomes of Surgery for Almost 18,000 Patients. The American journal of sports medicine. 2012;40:2230–2235. - PubMed
    1. Alentorn-Geli E, Myer GD, Silvers HJ, Samitier G, Romero D, Lazaro-Haro C, Cugat R. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: Mechanisms of injury and underlying risk factors. Knee Surg Sports Traumatol Arthrosc. 2009;17:705–729. - PubMed
    1. Andernord D, Desai N, Bjornsson H, Ylander M, Karlsson J, Samuelsson K. Patient Predictors of Early Revision Surgery After Anterior Cruciate Ligament Reconstruction: A Cohort Study of 16,930 Patients With 2-Year Follow-up. The American Journal of Sports Medicine. 2015;43:121–127. - PubMed
    1. Baumhauer JF, Alosa DM, Renstrom AF, Trevino S, Beynnon B. A prospective study of ankle injury risk factors. Am J Sports Med. 1995;23:564–570. - PubMed
    1. Bergmark A. Stability of the lumbar spine. A study in mechanical engineering. Acta orthopaedica Scandinavica Supplementum. 1989;230:1–54. - PubMed

Publication types