Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jul 28;12(7):e1005763.
doi: 10.1371/journal.ppat.1005763. eCollection 2016 Jul.

Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond

Wesley C Van Voorhis  1 John H Adams  2 Roberto Adelfio  3   4 Vida Ahyong  5 Myles H Akabas  6 Pietro Alano  7 Aintzane Alday  8 Yesmalie Alemán Resto  9 Aishah Alsibaee  10 Ainhoa Alzualde  8 Katherine T Andrews  11   12 Simon V Avery  13 Vicky M Avery  11 Lawrence Ayong  14 Mark Baker  15 Stephen Baker  16   17   18 Choukri Ben Mamoun  19 Sangeeta Bhatia  20 Quentin Bickle  21 Lotfi Bounaadja  22 Tana Bowling  23 Jürgen Bosch  24 Lauren E Boucher  24 Fabrice F Boyom  25 Jose Brea  26 Marian Brennan  10 Audrey Burton  23 Conor R Caffrey  27 Grazia Camarda  7 Manuela Carrasquilla  28 Dee Carter  29 Maria Belen Cassera  30 Ken Chih-Chien Cheng  31 Worathad Chindaudomsate  32 Anthony Chubb  10 Beatrice L Colon  33 Daisy D Colón-López  24 Yolanda Corbett  34 Gregory J Crowther  1 Noemi Cowan  3   4 Sarah D'Alessandro  34 Na Le Dang  35 Michael Delves  36 Joseph L DeRisi  5 Alan Y Du  37 Sandra Duffy  11 Shimaa Abd El-Salam El-Sayed  38   39 Michael T Ferdig  40 José A Fernández Robledo  9 David A Fidock  41 Isabelle Florent  22 Patrick V T Fokou  25 Ani Galstian  42 Francisco Javier Gamo  43 Suzanne Gokool  44 Ben Gold  45 Todd Golub  42 Gregory M Goldgof  46 Rajarshi Guha  31 W Armand Guiguemde  47 Nil Gural  20 R Kiplin Guy  47 Michael A E Hansen  14 Kirsten K Hanson  48   49 Andrew Hemphill  50 Rob Hooft van Huijsduijnen  51 Takaaki Horii  52 Paul Horrocks  53 Tyler B Hughes  35 Christopher Huston  54 Ikuo Igarashi  38 Katrin Ingram-Sieber  3   4 Maurice A Itoe  49 Ajit Jadhav  31 Amornrat Naranuntarat Jensen  55 Laran T Jensen  32 Rays H Y Jiang  2 Annette Kaiser  56 Jennifer Keiser  3   4 Thomas Ketas  45 Sebastien Kicka  57 Sunyoung Kim  58 Kiaran Kirk  59 Vidya P Kumar  19 Dennis E Kyle  2 Maria Jose Lafuente  43 Scott Landfear  60 Nathan Lee  51 Sukjun Lee  14 Adele M Lehane  59 Fengwu Li  60 David Little  45 Liqiong Liu  58 Manuel Llinás  28 Maria I Loza  26 Aristea Lubar  61 Leonardo Lucantoni  11 Isabelle Lucet  62 Louis Maes  63 Dalu Mancama  64 Nuha R Mansour  21 Sandra March  20 Sheena McGowan  65 Iset Medina Vera  49 Stephan Meister  37 Luke Mercer  23 Jordi Mestres  66 Alvine N Mfopa  25 Raj N Misra  67 Seunghyun Moon  14 John P Moore  45 Francielly Morais Rodrigues da Costa  68 Joachim Müller  50 Arantza Muriana  8 Stephen Nakazawa Hewitt  1 Bakela Nare  23 Carl Nathan  45 Nathalie Narraidoo  13 Sujeevi Nawaratna  11   12 Kayode K Ojo  1 Diana Ortiz  60 Gordana Panic  3   4 George Papadatos  69 Silvia Parapini  34 Kailash Patra  61 Ngoc Pham  11 Sarah Prats  43 David M Plouffe  70 Sally-Ann Poulsen  11 Anupam Pradhan  2 Celia Quevedo  8 Ronald J Quinn  11 Christopher A Rice  2 Mohamed Abdo Rizk  38   71 Andrea Ruecker  36 Robert St Onge  72 Rafaela Salgado Ferreira  73 Jasmeet Samra  28 Natalie G Robinett  24   74 Ulrich Schlecht  72 Marjorie Schmitt  74 Filipe Silva Villela  73 Francesco Silvestrini  7 Robert Sinden  75 Dennis A Smith  76 Thierry Soldati  57 Andreas Spitzmüller  66 Serge Maximilian Stamm  24 David J Sullivan  77 William Sullivan  78 Sundari Suresh  73 Brian M Suzuki  27 Yo Suzuki  79 S Joshua Swamidass  36 Donatella Taramelli  35 Lauve R Y Tchokouaha  25 Anjo Theron  64 David Thomas  42 Kathryn F Tonissen  11   80 Simon Townson  44 Abhai K Tripathi  77 Valentin Trofimov  57 Kenneth O Udenze  2 Imran Ullah  53 Cindy Vallieres  13 Edgar Vigil  37 Joseph M Vinetz  61 Phat Voong Vinh  16 Hoan Vu  11 Nao-Aki Watanabe  52 Kate Weatherby  29 Pamela M White  78 Andrew F Wilks  81   82 Elizabeth A Winzeler  37 Edward Wojcik  58 Melanie Wree  37 Wesley Wu  5 Naoaki Yokoyama  38 Paul H A Zollo  25 Nada Abla  51 Benjamin Blasco  51 Jeremy Burrows  51 Benoît Laleu  51 Didier Leroy  51 Thomas Spangenberg  51 Timothy Wells  51 Paul A Willis  51
Affiliations

Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond

Wesley C Van Voorhis et al. PLoS Pathog. .

Abstract

A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards overcoming this gap. But the interface could especially be bridged through a scale-up of open sharing of physical compounds, which would accelerate the finding of new starting points for drug discovery. The Medicines for Malaria Venture Malaria Box is a collection of over 400 compounds representing families of structures identified in phenotypic screens of pharmaceutical and academic libraries against the Plasmodium falciparum malaria parasite. The set has now been distributed to almost 200 research groups globally in the last two years, with the only stipulation that information from the screens is deposited in the public domain. This paper reports for the first time on 236 screens that have been carried out against the Malaria Box and compares these results with 55 assays that were previously published, in a format that allows a meta-analysis of the combined dataset. The combined biochemical and cellular assays presented here suggest mechanisms of action for 135 (34%) of the compounds active in killing multiple life-cycle stages of the malaria parasite, including asexual blood, liver, gametocyte, gametes and insect ookinete stages. In addition, many compounds demonstrated activity against other pathogens, showing hits in assays with 16 protozoa, 7 helminths, 9 bacterial and mycobacterial species, the dengue fever mosquito vector, and the NCI60 human cancer cell line panel of 60 human tumor cell lines. Toxicological, pharmacokinetic and metabolic properties were collected on all the compounds, assisting in the selection of the most promising candidates for murine proof-of-concept experiments and medicinal chemistry programs. The data for all of these assays are presented and analyzed to show how outstanding leads for many indications can be selected. These results reveal the immense potential for translating the dispersed expertise in biological assays involving human pathogens into drug discovery starting points, by providing open access to new families of molecules, and emphasize how a small additional investment made to help acquire and distribute compounds, and sharing the data, can catalyze drug discovery for dozens of different indications. Another lesson is that when multiple screens from different groups are run on the same library, results can be integrated quickly to select the most valuable starting points for subsequent medicinal chemistry efforts.

PubMed Disclaimer

Conflict of interest statement

The following commercial organizations employ or employed some of the authors, which might be considered a conflict of interest by some readers: BBD BioPhenix SL—BIOBIDE: Aintzane Alday PhD, Ainhoa Alzualde PhD, and, Arantza Muriana; Celia Quevedo PhD; SCYNEXIS, Inc.: Tana Bowling, Audrey Burton, Luke Mercer, and, Bakela Nare PhD; GlaxoSmithKline: Francisco Javier Gamo, PhD, Maria Jose Lafuente, PhD, and Sarah Prats; Eisai Co., Ltd.: Takaaki Horii Ph.D. and Nao-aki Watanabe Ph.D.; Novartis Inc.: Mark Baker PhD MSc (med), and David M. Plouffe; Definiens AG: Andreas Spitzmüller PhD; and, Merck Serono Inc: Thomas Spangenberg PhD.

Figures

Fig 1
Fig 1. Malaria Box Heatmap.
Shown are selected data from the HeatMap (S1 Table) for the 400 Malaria Box compounds. Each column represents an assay (grouped by category), compounds are represented in rows. The red-green gradient represents higher to lower activity. Favorable PK activities are scored green. Pf: Plasmodium falciparum, Pb: Plasmodium berghei, PK: pharmacokinetics, sol.: solubility, hERG: human ether-a-go-go channel inhibition, DDI: drug-drug interactions (predicted).
Fig 2
Fig 2. Metabolomic and chemogenomic profiling.
(A) Metabolic profiling: Heat map showing metabolic fingerprints of 80 Malaria Box compounds and atovaquone control. Parasite extracts were analyzed by LC-MS, and changes in metabolite pools were calculated for drug-treated parasites as compared to untreated controls. Hierarchical clustering was performed on 2log-fold changes in metabolites (data in S2 Table), scaled from -3 to +3. Six of seven compounds (indicated in red) reported to target PfATP4 [25] showed a distinct metabolic response characterized by the accumulation of dNTPs and a decrease in hemoglobin-derived peptides. A large cluster of compounds (indicated in blue) clustered with the atovaquone control (indicated in orange), and exhibit an atovaquone-like signature characterized by dysregulation of pyrimidine biosynthesis, and showed a distinct metabolic response characterized by the accumulation of dNTPs and a decrease in hemoglobin-derived peptides. (B) Chemogenomic profiling: A collection of 35 P. falciparum single insertion piggyBac mutants were profiled with 53 MMV compounds and 3 artemisinin (ART) compounds [Artesunate (AS), Artelinic acid (AL) and Artemether (AM)] for changes in IC50 relative to the wild-type parent NF54 (data in S3 Table, genes queried in S4 Table). Clone PB58 carried a piggyBac insertion in the promoter region of the K13 gene and has an increased sensitivity to ART compounds as do PB54 and PB55 [33]. Drug-drug relationships based on similarities in IC50 deviations of compounds generated with piggyBac mutants created chemogenomic profiles used to define drug-drug relationships. The significance of similarity in MoA between Malaria Box compounds and ART was evaluated by Pearson’s correlation calculations from pairwise comparisons. The X axis shows the chemogenomic profile correlation between a Malaria Box compound and AS, the Y axis with AM; the color gradient indicates the average correlation with all ART derivatives tested. Five Malaria Box compounds (MMV006087, MMV006427, MMV020492, MMV665876, MMV396797) were identified as having similar drug-drug chemogenomic profiles to the ART sensitivity cluster.

Similar articles

Cited by

References

    1. Gamo FJ, Sanz LM, Vidal J, de Cozar C, Alvarez E, Lavandera JL, et al. Thousands of chemical starting points for antimalarial lead identification. Nature. 2010;465(7296):305–10. 10.1038/nature09107 . - DOI - PubMed
    1. Meister S, Plouffe DM, Kuhen KL, Bonamy GM, Wu T, Barnes SW, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372–7. 10.1126/science.1211936 - DOI - PMC - PubMed
    1. Guiguemde WA, Shelat AA, Bouck D, Duffy S, Crowther GJ, Davis PH, et al. Chemical genetics of Plasmodium falciparum . Nature. 2010;465(7296):311–5. 10.1038/nature09099 - DOI - PMC - PubMed
    1. Avery VM, Bashyam S, Burrows JN, Duffy S, Papadatos G, Puthukkuti S, et al. Screening and hit evaluation of a chemical library against blood-stage Plasmodium falciparum. Malar J. 2014;13(1):190 Epub 2014/06/03. 10.1186/1475-2875-13-190 . - DOI - PMC - PubMed
    1. Spangenberg T, Burrows JN, Kowalczyk P, McDonald S, Wells TN, Willis P. The open access malaria box: a drug discovery catalyst for neglected diseases. PLoS One. 2013;8(6):e62906 10.1371/journal.pone.0062906 - DOI - PMC - PubMed

Publication types