Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2016 Mar-Apr;61(2):155-8.

[HYPOTHERMIA INFLUENCES ON OXYGEN TENSION IN THE BRAIN PARENCHYMA IN PATIENTS WITH ANEURYSMAL SUBARACHNOID HEMORRHAGE]

[Article in Russian]
  • PMID: 27468510
Case Reports

[HYPOTHERMIA INFLUENCES ON OXYGEN TENSION IN THE BRAIN PARENCHYMA IN PATIENTS WITH ANEURYSMAL SUBARACHNOID HEMORRHAGE]

[Article in Russian]
S A Abudeev et al. Anesteziol Reanimatol. 2016 Mar-Apr.

Abstract

Aneurysmal subarachnoid hemorrhage is a serious medical and social problem. The main physiological mechanisms that determine secondary brain damage in this patients are intracranial hypertension, cerebral vasospasm, dysfunction of autoregulation mechanisms, violation of liquorodynamics and delayed cerebral ischemia. The multimodal neuromonitoring for prevention and timely correction ofsecondary brain injury factors has become routine practice in neuroICU. Measurement of oxygen tension in the brain parenchyma is one of neuromonitoring options. During the years of intensive use of this method in clinical practice the reasons for reducing the oxygen tension in the brain parenchyma were revealed, as well as developed and clinically validated algorithms for correction of such conditions. However, there are clinical situations that are difficult to interpret and even more difficult to make the right tactical and therapeutic solutions. We present the clinical observation of the patient with aneurysmal subarachnoid hemorrhage, who had dramatically reduced brain intraparenchymal oxygen pressure although prolonged hypothermia were used. Despite this, the outcome was favorable. The analysis allowed to assume that the reason for this decrease in oxygen tension in the brain parenchyma could be hypothermia itself

PubMed Disclaimer

Publication types

MeSH terms