Metabolites: messengers between the microbiota and the immune system
- PMID: 27474437
- PMCID: PMC4973288
- DOI: 10.1101/gad.284091.116
Metabolites: messengers between the microbiota and the immune system
Abstract
The mammalian intestine harbors one of the largest microbial densities on Earth, necessitating the implementation of control mechanisms by which the host evaluates the state of microbial colonization and reacts to deviations from homeostasis. While microbial recognition by the innate immune system has been firmly established as an efficient means by which the host evaluates microbial presence, recent work has uncovered a central role for bacterial metabolites in the orchestration of the host immune response. In this review, we highlight examples of how microbiota-modulated metabolites control the development, differentiation, and activity of the immune system and classify them into functional categories that illustrate the spectrum of ways by which microbial metabolites influence host physiology. A comprehensive understanding of how microbiota-derived metabolites shape the human immune system is critical for the rational design of therapies for microbiota-driven diseases.
Keywords: immune; metabolites; microbiome.
© 2016 Levy et al.; Published by Cold Spring Harbor Laboratory Press.
Figures
References
-
- Abreu MT, Kantorovich V, Vasiliauskas EA, Gruntmanis U, Matuk R, Daigle K, Chen S, Zehnder D, Lin YC, Yang H, et al. 2004. Measurement of vitamin D levels in inflammatory bowel disease patients reveals a subset of Crohn's disease patients with elevated 1,25-dihydroxyvitamin D and low bone mineral density. Gut 53: 1129–1136. - PMC - PubMed
-
- Alex S, Lange K, Amolo T, Grinstead JS, Haakonsson AK, Szalowska E, Koppen A, Mudde K, Haenen D, Al-Lahham S, et al. 2013. Short-chain fatty acids stimulate angiopoietin-like 4 synthesis in human colon adenocarcinoma cells by activating peroxisome proliferator-activated receptor γ. Mol Cell Biol 33: 1303–1316. - PMC - PubMed
-
- Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K, et al. 2013. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500: 232–236. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical