Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct:99:43-53.
doi: 10.1016/j.freeradbiomed.2016.07.026. Epub 2016 Jul 26.

Manganese ions enhance mitochondrial H2O2 emission from Krebs cycle oxidoreductases by inducing permeability transition

Affiliations

Manganese ions enhance mitochondrial H2O2 emission from Krebs cycle oxidoreductases by inducing permeability transition

Erik Bonke et al. Free Radic Biol Med. 2016 Oct.

Abstract

Manganese-induced toxicity has been linked to mitochondrial dysfunction and an increased generation of reactive oxygen species (ROS). We could recently show in mechanistic studies that Mn2+ ions induce hydrogen peroxide (H2O2) production from the ubiquinone binding site of mitochondrial complex II (IIQ) and generally enhance H2O2 formation by accelerating the rate of superoxide dismutation. The present study with intact mitochondria reveals that manganese additionally enhances H2O2 emission by inducing mitochondrial permeability transition (mPT). In mitochondria fed by NADH-generating substrates, the combination of Mn2+ and different respiratory chain inhibitors led to a dynamically increasing H2O2emission which was sensitive to the mPT inhibitor cyclosporine A (CsA) as well as Ru-360, an inhibitor of the mitochondrial calcium uniporter (MCU). Under these conditions, flavin-containing enzymes of the mitochondrial matrix, e.g. the mitochondrial 2-oxoglutaratedehydrogenase (OGDH), were major sources of ROS. With succinate as substrate, Mn2+ stimulated ROS production mainly at complex II, whereby the applied succinate concentration had a marked effect on the tendency for mPT. Also Ca2+ increased the rate of H2O2 emission by mPT, while no direct effect on ROS-production of complex II was observed. The present study reveals a complex scenario through which manganese affects mitochondrial H2O2 emission: stimulating its production from distinct sites (e.g. site IIQ), accelerating superoxide dismutation and enhancing the emission via mPT which also leads to the loss of soluble components of the mitochondrial antioxidant systems and favors the ROS production from flavin-containing oxidoreductases of the Krebs cycle.

Keywords: 2-oxoglutarate dehydrogenase (OGDH); Complex II (succinate:ubiquinone oxidoreductase); Manganese; Mitochondria; Mitochondrial permeability transition (mPT); Reactive oxygen species (ROS).

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources