Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jul;140(1):678.
doi: 10.1121/1.4959003.

Cross-frequency coherence and pulse propagation in a turbulent atmosphere

Affiliations

Cross-frequency coherence and pulse propagation in a turbulent atmosphere

Vladimir E Ostashev et al. J Acoust Soc Am. 2016 Jul.

Abstract

Cross-frequency coherence of acoustic signals in a turbulent atmosphere is an important consideration for source localization with acoustic sensor arrays and for remote sensing of the atmosphere with sodars and tomography techniques. This paper takes as a starting point recently derived, closed-form equations for the spatial-temporal correlation function of a broadband acoustic signal propagating in a turbulent atmosphere with coupled spatial-temporal fluctuations in temperature and wind velocity. This theory is employed to calculate, based on the Rytov approximation, the two-point, two-time, two-frequency mutual coherence function of plane and spherical waves in the weak scattering regime. The cross-frequency coherence for these waveforms is then obtained and compared with that in the geometrical acoustics approximation. The coherence bandwidth is calculated and analyzed for typical meteorological regimes of the atmospheric surface layer and parameters of sound propagation. The results obtained are compared with available experimental data. The cross-frequency coherence is also used to study the effect of atmospheric turbulence on the mean intensity of an acoustic pulse propagating in a turbulent atmosphere.

PubMed Disclaimer

Publication types