Inverse 4D conformal planning for lung SBRT using particle swarm optimization
- PMID: 27476472
- PMCID: PMC5175212
- DOI: 10.1088/0031-9155/61/16/6181
Inverse 4D conformal planning for lung SBRT using particle swarm optimization
Abstract
A critical aspect of highly potent regimens such as lung stereotactic body radiation therapy (SBRT) is to avoid collateral toxicity while achieving planning target volume (PTV) coverage. In this work, we describe four dimensional conformal radiotherapy using a highly parallelizable swarm intelligence-based stochastic optimization technique. Conventional lung CRT-SBRT uses a 4DCT to create an internal target volume and then, using forward-planning, generates a 3D conformal plan. In contrast, we investigate an inverse-planning strategy that uses 4DCT data to create a 4D conformal plan, which is optimized across the three spatial dimensions (3D) as well as time, as represented by the respiratory phase. The key idea is to use respiratory motion as an additional degree of freedom. We iteratively adjust fluence weights for all beam apertures across all respiratory phases considering OAR sparing, PTV coverage and delivery efficiency. To demonstrate proof-of-concept, five non-small-cell lung cancer SBRT patients were retrospectively studied. The 4D optimized plans achieved PTV coverage comparable to the corresponding clinically delivered plans while showing significantly superior OAR sparing ranging from 26% to 83% for D max heart, 10%-41% for D max esophagus, 31%-68% for D max spinal cord and 7%-32% for V 13 lung.
Figures












Similar articles
-
Inverse-planned deliverable 4D-IMRT for lung SBRT.Med Phys. 2018 Nov;45(11):5145-5160. doi: 10.1002/mp.13157. Epub 2018 Oct 1. Med Phys. 2018. PMID: 30153339 Free PMC article.
-
A novel four-dimensional radiotherapy planning strategy from a tumor-tracking beam's eye view.Phys Med Biol. 2012 Nov 21;57(22):7579-98. doi: 10.1088/0031-9155/57/22/7579. Epub 2012 Oct 26. Phys Med Biol. 2012. PMID: 23103415
-
Dosimetric comparison of stereotactic body radiotherapy using 4D CT and multiphase CT images for treatment planning of lung cancer: evaluation of the impact on daily dose coverage.Radiother Oncol. 2009 Jun;91(3):314-24. doi: 10.1016/j.radonc.2008.11.018. Epub 2008 Dec 26. Radiother Oncol. 2009. PMID: 19111362 Clinical Trial.
-
Gating and tracking, 4D in thoracic tumours.Cancer Radiother. 2010 Oct;14(6-7):446-54. doi: 10.1016/j.canrad.2010.06.002. Epub 2010 Jul 31. Cancer Radiother. 2010. PMID: 20673737 Review.
-
Improving radiation conformality in the treatment of non-small cell lung cancer.Semin Radiat Oncol. 2010 Jul;20(3):171-7. doi: 10.1016/j.semradonc.2010.01.005. Semin Radiat Oncol. 2010. PMID: 20652085 Free PMC article. Review.
Cited by
-
Inverse radiotherapy planning based on bioeffect modelling for locally advanced left-sided breast cancer.Radiother Oncol. 2019 Jul;136:9-14. doi: 10.1016/j.radonc.2019.03.018. Epub 2019 Apr 3. Radiother Oncol. 2019. PMID: 31015135 Free PMC article.
-
Virtual Bronchoscopy-Guided Treatment Planning to Map and Mitigate Radiation-Induced Airway Injury in Lung SAbR.Int J Radiat Oncol Biol Phys. 2018 Sep 1;102(1):210-218. doi: 10.1016/j.ijrobp.2018.04.060. Epub 2018 May 2. Int J Radiat Oncol Biol Phys. 2018. PMID: 29891202 Free PMC article.
-
Combining Serial and Parallel Functionality in Functional Lung Avoidance Radiation Therapy.Int J Radiat Oncol Biol Phys. 2022 Jun 1;113(2):456-468. doi: 10.1016/j.ijrobp.2022.01.046. Epub 2022 Mar 9. Int J Radiat Oncol Biol Phys. 2022. PMID: 35279324 Free PMC article.
-
Multi-GPU configuration of 4D intensity modulated radiation therapy inverse planning using global optimization.Phys Med Biol. 2018 Jan 16;63(2):025028. doi: 10.1088/1361-6560/aa9c96. Phys Med Biol. 2018. PMID: 29176059 Free PMC article.
-
Internal Motion Estimation by Internal-external Motion Modeling for Lung Cancer Radiotherapy.Sci Rep. 2018 Feb 27;8(1):3677. doi: 10.1038/s41598-018-22023-3. Sci Rep. 2018. PMID: 29487330 Free PMC article.
References
-
- Coolens C, Evans PM, Seco J, Webb S, Blackall JM, Rietzel E, Chen GT. The susceptibility of IMRT dose distributions to intrafraction organ motion: an investigation into smoothing filters derived from four dimensional computed tomography data. Med Phys. 2006 Aug;33(8):2809–18. - PubMed
-
- Rietzel E, Chen GT, Choi NC, Willet CG. Four-dimensional image-based treatment planning: Target volume segmentation and dose calculation in the presence of respiratory motion. Int J Radiat Oncol Biol Phys. 2005 Apr 1;61(5):1535–50. - PubMed
-
- Nioutsikou E, Richard NSTJ, Bedford JL, Webb S. Quantifying the effect of respiratory motion on lung tumour dosimetry with the aid of a breathing phantom with deforming lungs. Phys Med Biol. 2006 Jul 21;51(14):3359–74. - PubMed
-
- Mutaf YD, Scicutella CJ, Michalski D, Fallon K, Brandner ED, Bednarz G, Huq MS. A simulation study of irregular respiratory motion and its dosimetric impact on lung tumors. Phys Med Biol. 2011 Feb 7;56(3):845–59. - PubMed
-
- Keall PJ, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys. 2006 Oct;33(10):3874–900. - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials