Cell-Free Mixing of Escherichia coli Crude Extracts to Prototype and Rationally Engineer High-Titer Mevalonate Synthesis
- PMID: 27476989
- PMCID: PMC6728267
- DOI: 10.1021/acssynbio.6b00154
Cell-Free Mixing of Escherichia coli Crude Extracts to Prototype and Rationally Engineer High-Titer Mevalonate Synthesis
Abstract
Cell-free metabolic engineering (CFME) is advancing a powerful paradigm for accelerating the design and synthesis of biosynthetic pathways. However, as most cell-free biomolecule synthesis systems to date use purified enzymes, energy and cofactor balance can be limiting. To address this challenge, we report a new CFME framework for building biosynthetic pathways by mixing multiple crude lysates, or extracts. In our modular approach, cell-free lysates, each selectively enriched with an overexpressed enzyme, are generated in parallel and then combinatorically mixed to construct a full biosynthetic pathway. Endogenous enzymes in the cell-free extract fuel high-level energy and cofactor regeneration. As a model, we apply our framework to synthesize mevalonate, an intermediate in isoprenoid synthesis. We use our approach to rapidly screen enzyme variants, optimize enzyme ratios, and explore cofactor landscapes for improving pathway performance. Further, we show that genomic deletions in the source strain redirect metabolic flux in resultant lysates. In an optimized system, mevalonate was synthesized at 17.6 g·L-1 (119 mM) over 20 h, resulting in a volumetric productivity of 0.88 g·L-1·hr-1. We also demonstrate that this system can be lyophilized and retain biosynthesis capability. Our system catalyzes ∼1250 turnover events for the cofactor NAD+ and demonstrates the ability to rapidly prototype and debug enzymatic pathways in vitro for compelling metabolic engineering and synthetic biology applications.
Keywords: Escherichia coli; cell-free metabolic engineering; cell-free synthetic biology; in vitro; metabolic pathway debugging; mevalonate.
Conflict of interest statement
The authors declare no competing financial interests.
Figures






Similar articles
-
Cell-Free Synthetic Biology for Pathway Prototyping.Methods Enzymol. 2018;608:31-57. doi: 10.1016/bs.mie.2018.04.029. Epub 2018 Jun 27. Methods Enzymol. 2018. PMID: 30173768
-
Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol.Metab Eng. 2015 Nov;32:133-142. doi: 10.1016/j.ymben.2015.09.015. Epub 2015 Sep 30. Metab Eng. 2015. PMID: 26428449
-
A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery.Metab Eng. 2016 Jul;36:116-126. doi: 10.1016/j.ymben.2016.03.002. Epub 2016 Mar 17. Metab Eng. 2016. PMID: 26996382
-
Cell-free metabolic engineering: biomanufacturing beyond the cell.Biotechnol J. 2015 Jan;10(1):69-82. doi: 10.1002/biot.201400330. Epub 2014 Oct 15. Biotechnol J. 2015. PMID: 25319678 Free PMC article. Review.
-
Microbial production of mevalonate.J Biotechnol. 2023 Jun 20;370:1-11. doi: 10.1016/j.jbiotec.2023.05.005. Epub 2023 May 18. J Biotechnol. 2023. PMID: 37209831 Review.
Cited by
-
In vitro multi-enzymatic cascades using recombinant lysates of E. coli: an emerging biocatalysis platform.Biophys Rev. 2020 Feb;12(1):175-182. doi: 10.1007/s12551-020-00618-3. Epub 2020 Jan 20. Biophys Rev. 2020. PMID: 31960346 Free PMC article. Review.
-
An integrated in vivo/in vitro framework to enhance cell-free biosynthesis with metabolically rewired yeast extracts.Nat Commun. 2021 Aug 26;12(1):5139. doi: 10.1038/s41467-021-25233-y. Nat Commun. 2021. PMID: 34446711 Free PMC article.
-
Cell-Free Expression of a Therapeutic Protein Serratiopeptidase.Molecules. 2023 Mar 31;28(7):3132. doi: 10.3390/molecules28073132. Molecules. 2023. PMID: 37049893 Free PMC article.
-
Cell-Free Gene Expression: Methods and Applications.Chem Rev. 2025 Jan 8;125(1):91-149. doi: 10.1021/acs.chemrev.4c00116. Epub 2024 Dec 19. Chem Rev. 2025. PMID: 39700225 Free PMC article. Review.
-
In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design.Nat Chem Biol. 2020 Aug;16(8):912-919. doi: 10.1038/s41589-020-0559-0. Epub 2020 Jun 15. Nat Chem Biol. 2020. PMID: 32541965
References
-
- Bohlmann J, and Keeling CI (2008) Terpenoid biomaterials, The Plant Journal 54, 656–669. - PubMed
-
- Leavell MD, McPhee DJ, and Paddon CJ (2016) Developing fermentative terpenoid production for commercial usage, Current opinion in biotechnology 37, 114–119. - PubMed
-
- Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, and Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin, Nature 496, 528–532. - PubMed
-
- Zurbriggen A, Kirst H, and Melis A (2012) Isoprene production via the mevalonic acid pathway in Escherichia coli (Bacteria), BioEnergy Research 5, 814–828.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials