Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016;79(13-15):658-74.
doi: 10.1080/15287394.2016.1171996.

Effect of dispersed crude oil on the feeding activity, retention efficiency, and filtration rate of differently sized blue mussels (Mytilus edulis)

Affiliations

Effect of dispersed crude oil on the feeding activity, retention efficiency, and filtration rate of differently sized blue mussels (Mytilus edulis)

Kirsten J Redmond et al. J Toxicol Environ Health A. 2016.

Abstract

The use of physiological response endpoints in environmental monitoring represents an opportunity to provide an integrated picture of health status and ecological fitness of individuals, and may provide an indication of potential longer term effects on aquatic organisms in the environment. The feeding behavior response sensitivity of blue mussels (Mytilus edulis) of differing size to dispersed crude oil (DCO) was investigated in a lab exposure experiment. The ability of mussels to recover following a single exposure was also investigated, as well as the response to consecutive exposures, in order to assess the utility of employing the same individuals in chronic environmental monitoring. Feeding physiology was assessed by measuring retention efficiency and filtration rate of individual mussels in a live-algae feeding assay. In addition, the percentage of mussels actively filtering during testing was calculated. The feeding physiology parameters were sensitive and able to discriminate exposed mussels from controls. Further, data indicated that larger mussels appear more suitable in environmental monitoring, as these animals showed both sensitivity and an ability to adapt and recover from exposure while remaining sensitive to subsequent treatments. Smaller mussels were also sensitive to the measured endpoints, even if these animals suffered higher rates of mortality during the exposure. Finally, when exposed to the high concentration of DCO, mussels displayed a tendency to close the valves and terminate filtration.

PubMed Disclaimer

Publication types

LinkOut - more resources