Statistical culture-based strategies to enhance chlamydospore production by Trichoderma harzianum SH2303 in liquid fermentation
- PMID: 27487807
- PMCID: PMC4980440
- DOI: 10.1631/jzus.B1500226
Statistical culture-based strategies to enhance chlamydospore production by Trichoderma harzianum SH2303 in liquid fermentation
Abstract
Trichoderma-based formulations are applied as commercial biocontrol agents for soil-borne plant pathogens. Chlamydospores are active propagules in Trichoderma spp., but their production is currently limited due to a lack of optimal liquid fermentation technology. In this study, we explored response surface methodologies for optimizing fermentation technology in Trichoderma SH2303. Our initial studies, using the Plackett-Burman design, identified cornmeal, glycerol, and initial pH levels as the most significant factors (P<0.05) for enhancing the production of chlamydospores. Subsequently, we applied the Box-Behnken design to study the interactions between, and optimal levels of, a number of factors in chlamydospore production. These statistically predicted results indicated that the highest number of chlamydospores (3.6×10(8) spores/ml) would be obtained under the following condition: corn flour 62.86 g/L, glycerol 7.54 ml/L, pH 4.17, and 6-d incubation in liquid fermentation. We validated these predicted values via three repeated experiments using the optimal culture and achieved maximum chlamydospores of 4.5×10(8) spores/ml, which approximately a 8-fold increase in the number of chlamydospores produced by T. harzianum SH2303 compared with that before optimization. These optimized values could help make chlamydospore production cost-efficient in the future development of novel biocontrol agents.
Keywords: Box-Behnken design; Chlamydospore; Fermentation optimization; Plackett-Burman screening; Trichoderma harzianum SH2303.
Conflict of interest statement
This article does not contain any studies with human or animal subjects performed by any of the authors.
Figures



Similar articles
-
Whole RNA-sequencing and gene expression analysis of Trichoderma harzianum Tr-92 under chlamydospore-producing condition.Genes Genomics. 2019 Jun;41(6):689-699. doi: 10.1007/s13258-019-00812-y. Epub 2019 Apr 9. Genes Genomics. 2019. PMID: 30968334
-
Optimization of the Fermentation Media and Parameters for the Bio-control Potential of Trichoderma longibrachiatum T6 Against Nematodes.Front Microbiol. 2020 Sep 30;11:574601. doi: 10.3389/fmicb.2020.574601. eCollection 2020. Front Microbiol. 2020. PMID: 33101249 Free PMC article.
-
Exogenous Regulators Enhance the Yield and Stress Resistance of Chlamydospores of the Biocontrol Agent Trichoderma harzianum T4.J Fungi (Basel). 2022 Sep 27;8(10):1017. doi: 10.3390/jof8101017. J Fungi (Basel). 2022. PMID: 36294583 Free PMC article.
-
Optimization of solid-state fermentation conditions for Trichoderma harzianum using an orthogonal test.Genet Mol Res. 2015 Mar 13;14(1):1771-81. doi: 10.4238/2015.March.13.4. Genet Mol Res. 2015. PMID: 25867321
-
Effects of culture conditions on spore types of Clonostachys rosea 67-1 in submerged fermentation.Lett Appl Microbiol. 2014 Apr;58(4):318-24. doi: 10.1111/lam.12193. Epub 2013 Nov 29. Lett Appl Microbiol. 2014. PMID: 24286624
Cited by
-
Whole RNA-sequencing and gene expression analysis of Trichoderma harzianum Tr-92 under chlamydospore-producing condition.Genes Genomics. 2019 Jun;41(6):689-699. doi: 10.1007/s13258-019-00812-y. Epub 2019 Apr 9. Genes Genomics. 2019. PMID: 30968334
-
Coinoculation of soybean plants with Bradyrhizobium japonicum and Trichoderma harzianum: Coexistence of both microbes and relief of nitrate inhibition of nodulation.Biotechnol Rep (Amst). 2020 Apr 29;26:e00461. doi: 10.1016/j.btre.2020.e00461. eCollection 2020 Jun. Biotechnol Rep (Amst). 2020. PMID: 32420051 Free PMC article.
-
Transcriptome Dynamics Underlying Chlamydospore Formation in Trichoderma virens GV29-8.Front Microbiol. 2021 Jun 8;12:654855. doi: 10.3389/fmicb.2021.654855. eCollection 2021. Front Microbiol. 2021. PMID: 34168625 Free PMC article.
-
Optimization of the Fermentation Media and Parameters for the Bio-control Potential of Trichoderma longibrachiatum T6 Against Nematodes.Front Microbiol. 2020 Sep 30;11:574601. doi: 10.3389/fmicb.2020.574601. eCollection 2020. Front Microbiol. 2020. PMID: 33101249 Free PMC article.
-
Fungal X-Intrinsic Protein Aquaporin from Trichoderma atroviride: Structural and Functional Considerations.Biomolecules. 2021 Feb 23;11(2):338. doi: 10.3390/biom11020338. Biomolecules. 2021. PMID: 33672420 Free PMC article.
References
-
- Bae S, Shoda M. Statistical optimization of culture conditions for bacterial cellulose production using Box-Behnken design. Biotechnol Bioeng. 2005;90(1):20–28. (Available from: http://dx.doi.org/10.1002/bit.20325) - DOI - PubMed
-
- Carreras-Villasenor N, Sanchez-Arreguin JA, Herrera-Estrella AH. Trichoderma: sensing the environment for survival and dispersal. Microbiology. 2011;158(1):3–16. (Available from: http://dx.doi.org/10.1099/mic.0.052688-0) - DOI - PubMed
-
- Fravel DR. Commercialization and implementation of biocontrol. Annu Rev Phytopathol. 2005;43(1):337–359. (Available from: http://dx.doi.org/10.1146/annurev.phyto.43.032904.092924) - DOI - PubMed
-
- Friedl MA, Kubicek CP, Druzhinina IS. Carbon source dependence and photostimulation of conidiation in Hypocrea atroviridis . Appl Environ Microbiol. 2008;74(1):245–250. (Available from: http://dx.doi.org/10.1128/AEM.02068-07) - DOI - PMC - PubMed
-
- Gao L, Sun MH, Liu XZ, et al. Effects of carbon concentration and carbon to nitrogen ratio on the growth and sporulation of several biocontrol fungi. Mycol Res. 2007;111(1):87–92. (Available from: http://dx.doi.org/10.1016/j.mycres.2006.07.019) - DOI - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous