Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Aug 4;5(1):78.
doi: 10.1186/s40249-016-0164-3.

Why is malaria associated with poverty? Findings from a cohort study in rural Uganda

Affiliations

Why is malaria associated with poverty? Findings from a cohort study in rural Uganda

Lucy S Tusting et al. Infect Dis Poverty. .

Abstract

Background: Malaria control and sustainable development are linked, but implementation of 'multisectoral' intervention is restricted by a limited understanding of the causal pathways between poverty and malaria. We investigated the relationships between socioeconomic position (SEP), potential determinants of SEP, and malaria in Nagongera, rural Uganda.

Methods: Socioeconomic information was collected for 318 children aged six months to 10 years living in 100 households, who were followed for up to 36 months. Mosquito density was recorded using monthly light trap collections. Parasite prevalence was measured routinely every three months and malaria incidence determined by passive case detection. First, we evaluated the association between success in smallholder agriculture (the primary livelihood source) and SEP. Second, we explored socioeconomic risk factors for human biting rate (HBR), parasite prevalence and incidence of clinical malaria, and spatial clustering of socioeconomic variables. Third, we investigated the role of selected factors in mediating the association between SEP and malaria.

Results: Relative agricultural success was associated with higher SEP. In turn, high SEP was associated with lower HBR (highest versus lowest wealth index tertile: Incidence Rate Ratio 0.71, 95 % confidence intervals (CI) 0.54-0.93, P = 0.01) and lower odds of malaria infection in children (highest versus lowest wealth index tertile: adjusted Odds Ratio 0.52, 95 % CI 0.35-0.78, P = 0.001), but SEP was not associated with clinical malaria incidence. Mediation analysis suggested that part of the total effect of SEP on malaria infection risk was explained by house type (24.9 %, 95 % CI 15.8-58.6 %) and food security (18.6 %, 95 % CI 11.6-48.3 %); however, the assumptions of the mediation analysis may not have been fully met.

Conclusion: Housing improvements and agricultural development interventions to reduce poverty merit further investigation as multisectoral interventions against malaria. Further interdisplinary research is needed to understand fully the complex pathways between poverty and malaria and to develop strategies for sustainable malaria control.

Keywords: Development; Housing; Malaria; Poverty; Socioeconomic; Uganda; Wealth index.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Conceptual framework for the relationship between relative agricultural success, socioeconomic position (SEP) and malaria in Nagongera, Uganda. In sub-Saharan Africa, the odds of malaria infection are on average halved in children with the highest socioeconomic position (SEP) within a community, compared to children with the lowest SEP [3]. Household SEP may be approximated using a wealth index. Wealthier children are hypothesised to have a lower risk of malaria due, among other factors, to: (1) greater disposable income, that makes prophylaxis, treatment and transport to clinics more affordable and therefore improves access to health care [9], (2) greater ownership and use of LLINs [9], (3) improved treatment-seeking behaviour among caregivers [9], (4) better housing, which lowers the risk of exposure to malaria vectors indoors [11, 16] and (5) greater food security, which reduces undernutrition and protein-energy malnutrition and possibly susceptibility to malaria infection and progression to severe disease [10] (though the evidence is inconsistent [20]). Modern houses were defined as those with cement, wood or metal walls; a tiled or metal roof and closed eaves. All other houses were classified as traditional. Access to healthcare and LLIN use were not hypothesised to be associated with SEP in this study population, since LLINs and all healthcare were provided by the study free of charge, but wealthier households were hypothesised to seek treatment more promptly than poorer households. Other household-level risk factors for malaria include distance to larval habitats, distance to village periphery, urbanicity and the density of livestock nearby, which were outside the scope of this study. In turn, malaria imposes costs that can cause poverty [7, 8], but this feedback loop was not analysed in this study. Heterogeneity in SEP is hypothesised to be driven largely by relative success in smallholder agriculture, since agriculture is the primary livelihood source in Nagongera (Box 1). There are many other determinants of SEP that are well studied outside the health sphere [18, 24], but we include here only non-agricultural income and access to remittances. Land area cultivated* is included as an indicator of relative agricultural success, but may also be a determinant of relative agricultural success among other factors which are outside the scope of this study. This conceptual framework is not an exhaustive representation of all malaria risk factors, confounders, mediators and causal associations, but includes only those analysed in this study. The conceptual framework adds greater complexity to those by de Castro [8] and Somi [7], which primarily demonstrate bi-directionality, while the present study is chiefly interested in dissecting the strands of the poverty-to-malaria direction
Fig. 2
Fig. 2
Study profile for a cohort of children aged 6 months to ten years (N = 333) in Nagongera, Uganda
Fig. 3
Fig. 3
Local cluster maps of wealth index score, house type and cultivated land area in 100 households in Nagongera, Uganda. Maps show results from univariate Local Indicator of Spatial Association (LISA) analysis. A cluster of high wealth index scores overlapping with a cluster of modern housing is located in the south-east of the study area. Houses were classified as modern (cement, wood or metal walls; a tiled or metal roof and closed eaves) or traditional (all other houses). Wealth index score and land area cultivated were modelled as continuous variables

References

    1. WHO . World Malaria Report. Geneva: World Health Organization; 2015.
    1. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, Battle KE, Moyes CL, Henry A, Eckhoff PA, Wenger EA, Briët O, Penny MA, Smith TA, Bennett A, Yukich J, Eisele TP, Griffin JT, Fergus CA, Lynch M, Lindgren F, Cohen JM, Murray CL, Smith DL, Hay SI, Cibulskis RE, Gething PW. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11. doi: 10.1038/nature15535. - DOI - PMC - PubMed
    1. Tusting LS, Willey B, Lucas H, Thompson J, Kafy HT, Smith R, Lindsay SW. Socioeconomic development as an intervention against malaria: a systematic review and meta-analysis. Lancet. 2013;382(9895):834. - PubMed
    1. Bruce-Chwatt L, de Zulueta J. The rise and fall of malaria in Europe. London: Oxford University Press; 1980.
    1. RBM/UNDP . Multisectoral Action Framework for Malaria. Geneva: Roll Back Malaria/United Nations Development Programme; 2013.