Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jan;12(1).
doi: 10.1002/biot.201600269. Epub 2016 Sep 23.

Quantitative analysis of aromatics for synthetic biology using liquid chromatography

Affiliations

Quantitative analysis of aromatics for synthetic biology using liquid chromatography

Bin Lai et al. Biotechnol J. 2017 Jan.

Abstract

The replacement of petrochemical aromatics with bio-based molecules is a key area of current biotechnology research. To date, a small number of aromatics have been produced by recombinant bacteria in laboratory scale while industrial production still requires further strain development. While each study includes some distinct analytical methodology to quantify certain aromatics, a method that can reliably quantify a great number of aromatic products and relevant pathway intermediates is needed to accelerate strain development. In this study, we developed a robust reverse phase high performance liquid chromatography method to quantify a wide range of aromatic metabolites present in host microorganisms using the shikimate pathway, which is the major metabolic pathway for biosynthesis of aromatics. Twenty-three metabolites can be quantified precisely with the optimized method using standard HPLC equipment and UV detection, with the mobile phase used for chromatography also compatible with mass spectrometry (MS). The limit of quantification/detection is as low as 10-10 to 10-13 mol, respectively, which makes this method feasible for quantification of intracellular metabolites. This method covers most metabolic routes for aromatics biosynthesis, it is inexpensive, robust, simple, precise and sensitive, and has been demonstrated on cell extracts from S. cerevisiae genetically engineered to overproduce aromatics.

Keywords: Aromatics; High performance liquid chromatography; Quantitative metabolomics; Shikimate pathway; Synthetic biology.

PubMed Disclaimer

MeSH terms

LinkOut - more resources