Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct;1862(10):2015-21.
doi: 10.1016/j.bbadis.2016.08.001. Epub 2016 Aug 4.

Increased aquaporin 1 and 5 membrane expression in the lens epithelium of cataract patients

Affiliations
Free article

Increased aquaporin 1 and 5 membrane expression in the lens epithelium of cataract patients

Olatz Barandika et al. Biochim Biophys Acta. 2016 Oct.
Free article

Abstract

In this work we have analyzed the expression levels of the main aquaporins (AQPs) expressed in human lens epithelial cells (HLECs) using 112 samples from patients treated with cataract surgery and 36 samples from individuals treated with refractive surgery, with transparent lenses as controls. Aquaporin-1 (AQP1) is the main AQP, representing 64.1% of total AQPs in HLECs, with aquaporin-5 (AQP5) representing 35.9% in controls. A similar proportion of each AQP in cataract was found. Although no differences were found at the mRNA level compared to controls, a significant 1.65-fold increase (p=0.001) in AQP1protein expression was observed in HLECs from cataract patients, with the highest differences being found for nuclear cataracts (2.1-fold increase; p<0.001). A similar trend was found for AQP5 (1.47-fold increase), although the difference was not significant (p=0.161). Moreover we have shown increased membrane AQP5 protein expression in HLECs of patients with cataracts. No association of AQP1 or AQP5 expression levels with age or sex was observed in either group. Our results suggest regulation of AQP1 and AQP5 at the post-translational level and support previous observations on the implication of AQP1 and 5 in maintenance of lens transparency in animal models. Our results likely reflect a compensatory response of the crystalline lens to delay cataract formation by increasing the water removal rate.

Keywords: AQP1; AQP5; Aquaporins; Cataract; Lens transparency.

PubMed Disclaimer

Publication types

LinkOut - more resources