Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Aug 17;18(33):23207-14.
doi: 10.1039/c6cp03185d.

Globular-disorder transition in proteins: a compromise between hydrophobic and electrostatic interactions?

Affiliations

Globular-disorder transition in proteins: a compromise between hydrophobic and electrostatic interactions?

Anupaul Baruah et al. Phys Chem Chem Phys. .

Abstract

The charge-hydrophobicity correlation of globular and disordered proteins is explored using a generalized self-consistent field theoretical method combined with Monte Carlo simulations. Globular and disordered protein sequences with varied mean net charge and mean hydrophobicity are designed by theory, while Metropolis Monte Carlo generates a suitable ensemble of conformations. Results imply a transition of the dominant interactions between globular and disordered proteins across the charge-hydrophobicity boundary. It is observed that the charge-hydrophobicity boundary actually represents a trade-off between the repulsive and attractive interactions in a protein sequence. The attractive interactions predominate on the globular side of the boundary, while the repulsive interactions prevail on the disordered side. For globular proteins, core forming hydrophobic interactions are dominant leading to a minimally frustrated native conformation. For disordered proteins, the repulsive electrostatic interactions prevail yielding a minimally frustrated region comprising of an expanded, dynamic conformational ensemble. Thus, protein disorder, like protein folding, satisfies the principle of minimal frustration. All results are compared to real globular and disordered proteins. Thus this algorithm may be useful to probe the conformational characteristics of disordered proteins.

PubMed Disclaimer

LinkOut - more resources