Unconventional high-Tc superconductivity in fullerides
- PMID: 27501971
- PMCID: PMC4978744
- DOI: 10.1098/rsta.2015.0320
Unconventional high-Tc superconductivity in fullerides
Abstract
A3C60 molecular superconductors share a common electronic phase diagram with unconventional high-temperature superconductors such as the cuprates: superconductivity emerges from an antiferromagnetic strongly correlated Mott-insulating state upon tuning a parameter such as pressure (bandwidth control) accompanied by a dome-shaped dependence of the critical temperature, Tc However, unlike atom-based superconductors, the parent state from which superconductivity emerges solely by changing an electronic parameter-the overlap between the outer wave functions of the constituent molecules-is controlled by the C60 (3-) molecular electronic structure via the on-molecule Jahn-Teller effect influence of molecular geometry and spin state. Destruction of the parent Mott-Jahn-Teller state through chemical or physical pressurization yields an unconventional Jahn-Teller metal, where quasi-localized and itinerant electron behaviours coexist. Localized features gradually disappear with lattice contraction and conventional Fermi liquid behaviour is recovered. The nature of the underlying (correlated versus weak-coupling Bardeen-Cooper-Schrieffer theory) s-wave superconducting states mirrors the unconventional/conventional metal dichotomy: the highest superconducting critical temperature occurs at the crossover between Jahn-Teller and Fermi liquid metal when the Jahn-Teller distortion melts.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'.
Keywords: Jahn–Teller effect; Mott insulator; antiferromagnetism; electron correlation; fullerenes; superconductivity.
© 2016 The Author(s).
Figures











Similar articles
-
Optimized unconventional superconductivity in a molecular Jahn-Teller metal.Sci Adv. 2015 Apr 17;1(3):e1500059. doi: 10.1126/sciadv.1500059. eCollection 2015 Apr. Sci Adv. 2015. PMID: 26601168 Free PMC article.
-
Exotic s-wave superconductivity in alkali-doped fullerides.J Phys Condens Matter. 2016 Apr 20;28(15):153001. doi: 10.1088/0953-8984/28/15/153001. Epub 2016 Mar 14. J Phys Condens Matter. 2016. PMID: 26974650
-
The strength of electron electron correlation in Cs3C60.Sci Rep. 2015 Oct 15;5:15240. doi: 10.1038/srep15240. Sci Rep. 2015. PMID: 26468959 Free PMC article.
-
Super-atom molecular orbital excited states of fullerenes.Philos Trans A Math Phys Eng Sci. 2016 Sep 13;374(2076):20150322. doi: 10.1098/rsta.2015.0322. Philos Trans A Math Phys Eng Sci. 2016. PMID: 27501970 Free PMC article. Review.
-
Organic superconductors with an incommensurate anion structure.Sci Technol Adv Mater. 2009 Jul 6;10(2):024303. doi: 10.1088/1468-6996/10/2/024303. eCollection 2009 Apr. Sci Technol Adv Mater. 2009. PMID: 27877276 Free PMC article. Review.
Cited by
-
Multiple cation insertion into a polyaromatic hydrocarbon guided by data and computation.Chem Sci. 2024 Dec 9;16(5):2238-2250. doi: 10.1039/d4sc05128a. eCollection 2025 Jan 29. Chem Sci. 2024. PMID: 39759935 Free PMC article.
-
Fulleride superconductivity tuned by elastic strain due to cation compositional disorder.Chem Sci. 2024 Sep 3;15(40):16485-93. doi: 10.1039/d4sc03399j. Online ahead of print. Chem Sci. 2024. PMID: 39263659 Free PMC article.
-
DNA as a perfect quantum computer based on the quantum physics principles.Sci Rep. 2024 May 21;14(1):11636. doi: 10.1038/s41598-024-62539-5. Sci Rep. 2024. PMID: 38773193 Free PMC article.
-
Superconductivity Above 100 K Predicted in Carbon-Cage Network.Adv Sci (Weinh). 2023 Nov;10(33):e2303639. doi: 10.1002/advs.202303639. Epub 2023 Oct 9. Adv Sci (Weinh). 2023. PMID: 37807820 Free PMC article.
References
-
- Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE. 1985. C60: Buckminsterfullerene. Nature 318, 162–163. (10.1038/318162a0) - DOI
-
- David WIF, Ibberson RM, Matthewman JC, Prassides K, Dennis TJS, Hare JP, Kroto HW, Taylor R, Walton DRM. 1991. Crystal structure and bonding of ordered C60. Nature 353, 147–149. (10.1038/353147a0) - DOI
-
- Haddon RC. et al. 1991. Conducting films of C60 and C70 by alkali-metal doping. Nature 350, 320–322. (10.1038/350320a0) - DOI
-
- Hebard AF, Rosseinsky MJ, Haddon RC, Murphy DW, Glarum SH, Palstra TTM, Ramirez AP, Kortan AR. 1991. Superconductivity at 18 K in potassium-doped C60. Nature 350, 600–601. (10.1038/350600a0) - DOI
-
- Holczer K, Klein O, Huang SM, Kaner RB, Fu KJ, Whetten RL, Diederich F. 1991. Alkali-fulleride superconductors: synthesis, composition, and diamagnetic shielding. Science 252, 1154–1157. (10.1126/science.252.5009.1154) - DOI
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous