Multiple Lines of Evidence from Mitochondrial Genomes Resolve Phylogenetic Relationships of Parasitic Wasps in Braconidae
- PMID: 27503293
- PMCID: PMC5630901
- DOI: 10.1093/gbe/evw184
Multiple Lines of Evidence from Mitochondrial Genomes Resolve Phylogenetic Relationships of Parasitic Wasps in Braconidae
Abstract
The rapid increase in the number of mitochondrial genomes in public databases provides opportunities for insect phylogenetic studies; but it also provides challenges because of gene rearrangements and variable substitution rates among both lineages and sites. Typically, phylogenetic studies use mitochondrial sequence data but exclude other features of the mitochondrial genome from analyses. Here, we undertook large-scale sequencing of mitochondrial genomes from a worldwide collection of specimens belonging to Braconidae, one of the largest families of Metazoa. The strand-asymmetry of base composition in the mitochondrial genomes of braconids is reversed, providing evidence for monophyly of the Braconidae. We have reconstructed a backbone phylogeny of the major lineages of Braconidae from gene order of the mitochondrial genomes. Standard phylogenetic analyses of DNA sequences provided strong support for both Cyclostomes and Noncyclostomes. Four subfamily complexes, that is, helconoid, euphoroid, sigalphoid, and microgastroid, within the Noncyclostomes were reconstructed robustly, the first three of which formed a monophyletic group sister to the last one. Aphidiinae was recovered as a lineage sister to other groups of Cyclostomes, while the Ichneutinae was recovered as paraphyletic. Separate analyses of the subdivided groups showed congruent relationships, employing different matrices and methods, for the internal nodes of the Cyclostomes and the microgastroid complex of subfamilies. This research, using multiple lines of evidence from mitochondrial genomes, illustrates multiple uses of mitochondrial genomes for phylogenetic inference in Braconidae.
Keywords: Braconidae; Hymenoptera; gene rearrangement; phylogeny; strand asymmetry.
© The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Figures



Similar articles
-
Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects.BMC Genomics. 2010 Jun 11;11:371. doi: 10.1186/1471-2164-11-371. BMC Genomics. 2010. PMID: 20537196 Free PMC article.
-
The mitochondrial genome of Binodoxys acalephae (Hymenoptera: Braconidae) with unique gene rearrangement and phylogenetic implications.Mol Biol Rep. 2023 Mar;50(3):2641-2649. doi: 10.1007/s11033-022-08232-0. Epub 2023 Jan 13. Mol Biol Rep. 2023. PMID: 36639523 Free PMC article.
-
Evolutionary relationships among the Braconidae (Hymenoptera: Ichneumonoidea) inferred from partial 16S rDNA gene sequences.Insect Mol Biol. 1998 May;7(2):129-50. doi: 10.1046/j.1365-2583.1998.72058.x. Insect Mol Biol. 1998. PMID: 9535159
-
Systematics, Phylogeny, and Evolution of Braconid Wasps: 30 Years of Progress.Annu Rev Entomol. 2019 Jan 7;64:335-358. doi: 10.1146/annurev-ento-011118-111856. Epub 2018 Oct 17. Annu Rev Entomol. 2019. PMID: 30332295 Review.
-
Insect mitochondrial genomics: implications for evolution and phylogeny.Annu Rev Entomol. 2014;59:95-117. doi: 10.1146/annurev-ento-011613-162007. Epub 2013 Oct 16. Annu Rev Entomol. 2014. PMID: 24160435 Review.
Cited by
-
Five new mitogenomes sequences of Calidridine sandpipers (Aves: Charadriiformes) and comparative mitogenomics of genus Calidris.PeerJ. 2022 Apr 18;10:e13268. doi: 10.7717/peerj.13268. eCollection 2022. PeerJ. 2022. PMID: 35462767 Free PMC article.
-
Complete Mitochondrial Genome and Its Phylogenetic Analysis of Oides decempunctatus (Coleoptera: Chrysomelidae).Ecol Evol. 2025 Jul 15;15(7):e71819. doi: 10.1002/ece3.71819. eCollection 2025 Jul. Ecol Evol. 2025. PMID: 40666683 Free PMC article.
-
Mitochondrial phylogenomics and mitogenome organization in the parasitoid wasp family Braconidae (Hymenoptera: Ichneumonoidea).BMC Ecol Evol. 2022 Apr 12;22(1):46. doi: 10.1186/s12862-022-01983-1. BMC Ecol Evol. 2022. PMID: 35413835 Free PMC article.
-
Whole-genome sequencing analysis and protocol for RNA interference of the endoparasitoid wasp Asobara japonica.DNA Res. 2022 Jun 25;29(4):dsac019. doi: 10.1093/dnares/dsac019. DNA Res. 2022. PMID: 35686927 Free PMC article.
-
Characterization of the complete mitochondrial genome of the longhorn beetle, Batocerahorsfieldi (Coleoptera, Cerambycidae) and its phylogenetic analysis with suitable longhorn beetles.Zookeys. 2023 Jul 4;1168:387-402. doi: 10.3897/zookeys.1168.105328. eCollection 2023. Zookeys. 2023. PMID: 37448482 Free PMC article.
References
-
- Barr CM, Neiman M, Taylor DR. 2005. Inheritance and recombination of mitochondrial genomes in plants, fungi and animals. New Phytol. 168:39–50. - PubMed
-
- Belshaw R, Fitton M, Herniou E, Gimeno C, Quicke DLJ. 1998. A phylogenetic reconstruction of the Ichneumonoidea (Hymenoptera) based on the D2 variable region of 28S ribosomal RNA. Syst Entomol. 23:109–123.
-
- Belshaw R, Quicke DLJ. 1997. A molecular phylogeny of the aphidiinae (Hymenoptera: Braconidae). Mol Phylogenet Evol. 7:281–293. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources